
Seedless Extractors

Jesse Patrick McGrenra Goodman
Cornell University

December 2023

2

Abstract

Randomness is a powerful tool, exploited almost everywhere in computer science – from cryptography, to
distributed computing, to algorithm design and more. Unfortunately, most of these applications require ac-
cess to perfectly uniform bits, while randomness harvested from nature (e.g., atmospheric noise, radioactive
decay, other quantum phenomena) rarely looks so pure. This motivates the study of randomness extractors,
which are deterministic algorithms that convert weak sources of randomness into uniformly random bits.

The study of extractors dates back over 70 years, and has blossomed into a beautiful theory with deep
connections to cryptography, complexity theory, and combinatorics. As it is impossible to construct a single
extractor that works for all weak sources of randomness, research on extractors has split into two comple-
mentary settings: (1) the seeded setting, where the extractor is equipped with a short uniform seed to help
extract bits from the weak source; and (2) the seedless setting, where the extractor is given no seed, but
the weak source is equipped with some additional structure. While a rich body of work has culminated in
near-optimal seeded extractors, we are still far from constructing optimal seedless extractors.

In this thesis, we explicitly construct new seedless extractors that significantly improve the previous
state-of-the-art. To build our extractors, we exploit new reductions within pseudorandomness, and unearth
new connections to extremal combinatorics, communication complexity, and coding theory. Along the way,
we unlock exciting new applications in cryptography, complexity theory, and beyond.

3

4

Acknowledgements

I would not still be in academia if it weren’t for Eshan. Over the past 5 years, Eshan Chattopadhyay has
served as the most excellent PhD advisor - generous with his time, his praise, and his support. I always
looked forward to our weekly meetings, and will forever be thankful for the opportunity he has given me.

To my committee members Bobby Kleinberg and Éva Tardos, thank you for being such friendly and
familiar faces around Gates. I will always view Bobby as a role model, in both the intellectual and moral
sense. Éva, thank you for all the life advice.

To the Bayen lab at UC Berkeley, thank you for providing me with a welcoming place to stay between my
undergrad and graduate years. Alex Keimer, I miss our daily walks to the corner shop to pick up chocolate.

To my collaborators, I am grateful for all of the wonderful things you have taught me. A special thanks
to Vipul Goyal, Xin Li, and David Zuckerman, for working with me so early on in my PhD. Omar Alrabiah,
Jonathan Mosheiff, and João Ribeiro: I like spending the first 15 minutes of every meeting just catching
up. Jyun-Jie Liao, thanks for putting up with my nonstop questions, and keeping me company at the lab.
Abhishek Shetty, thank you for being my academic shaman. Sergey, thank you for the cheesecake at 5am.

To the theory lab at Cornell, it’s fun to share an office with you guys. Especially Shijin Rajakrishnan,
Makis Arsenis, and Jyun-Jie (JJ) Liao.

Franklin Gong, thanks for making Ithaca feel like a home.
To my friends in SF: thank you for listening to my stories. To my friends in NY: thank you for asking

me to visit more. And to my friends back home: thanks for helping me get away from it all.
To my family in Ireland, thanks for all the summers growing up. Angela, thanks for all the candy. JJ,

thanks for carrying me around the house in a sleeping bag.
Mom, thank you for being my cheerleader.
Dad, thank you for teaching me discipline through piano.
And Emmett, thanks for being my brother.

5

6

Contents

1 Introduction 11
1.1 Randomness in computation . 11
1.2 Randomness in the wild . 12
1.3 Randomness extractors . 13

1.3.1 On the existence of extractors . 16
1.3.2 Seeded extractors . 19
1.3.3 Seedless extractors . 20
1.3.4 Our contributions . 23

2 Preliminaries 29
2.1 Notation . 29
2.2 Probability . 30
2.3 Extractors . 33
2.4 Codes . 37

I Extractors for independent sources 39

3 Extractors for adversarial sources 41
3.1 Introduction . 42
3.2 Our results . 45
3.3 The main extractor . 47

3.3.1 A known construction: two-source extractors everywhere 47
3.3.2 A warm-up construction: three-source extractors and cap set bounds 49
3.3.3 The general construction: leakage-resilient extractors and extremal designs 51

3.4 Optimized extractors for a few long sources . 54
3.4.1 Polylogarithmic good sources via correlation breakers and Ramsey graphs 56
3.4.2 Polynomial locality via correlation breakers and extremal C4-free graphs 58

3.5 Optimized extractors for many short sources . 62
3.5.1 Polylogarithmic good sources via extractors for low-weight affine sources 63
3.5.2 Polynomial locality via extractors for low-weight affine sources 63

3.6 Applications in pseudorandomness . 64
3.6.1 Extractors for total-entropy sources . 64
3.6.2 Extractors for small-space sources . 67

3.7 Applications in distributed computing . 69

7

3.7.1 Collective coin flipping . 70
3.8 Applications in cryptography . 70

3.8.1 The common reference string (CRS) model . 70
3.9 Future directions . 70

4 Leakage-resilient extractors 73
4.1 Introduction . 74
4.2 Our results . 78
4.3 The extractor . 80

4.3.1 The NOF-hard function . 81
4.3.2 Handling more leakage under less collusion via basic combinatorics 83
4.3.3 Dropping the entropy requirement via two-source condensers and leakage lifting . . 84
4.3.4 Adding adaptivity at (almost) no cost . 87

4.4 Applications in communication complexity . 89
4.4.1 Explicit lower bounds against multiparty communication protocols 89

4.5 Applications in cryptography . 89
4.5.1 Leakage-resilient secret sharing: an exponential improvement 89

4.6 Applications in pseudorandomness . 95
4.6.1 Extractors for adversarial sources . 95

4.7 Future directions . 95

5 Explicit extremal designs 97
5.1 Introduction . 98
5.2 Our results . 99
5.3 The design . 99

5.3.1 A simple construction via linear codes and Erdős-Ginzburg-Ziv constants 100
5.4 Applications in pseudorandomness . 104

5.4.1 Extractors for adversarial sources . 104
5.5 Future directions . 105

II Extractors for algebraic sources 107

6 Extractors for affine sources 109
6.1 Introduction . 110
6.2 Our results . 113
6.3 The extractor . 114

6.3.1 A simple construction via somewhere extractors and correlation breakers 114
6.4 Applications in pseudorandomness . 119

6.4.1 Extractors for small-space sources . 119
6.4.2 Extractors for circuit sources . 120

6.5 Applications in complexity theory . 120
6.5.1 Explicit lower bounds against circuits and more . 120

6.6 Future directions . 121

8

III Extractors for low-complexity sources 123

7 Extractors for small-space sources 125
7.1 Introduction . 126
7.2 Our results . 128
7.3 The extractors . 131

7.3.1 An old reduction from small-space sources to adversarial sources 131
7.3.2 A new reduction from small-space sources to affine sources 132

7.4 Applications in complexity theory . 140
7.4.1 Complexity of sampling . 140

7.5 Future directions . 143

8 Extractors for circuit sources 145
8.1 Introduction . 146
8.2 Our results . 150
8.3 Do black-box affine extractors suffice? . 152

8.3.1 Entropy upper bounds: a reduction from d-local sources to 1-local NOBF sources . . 152
8.3.2 Entropy lower bounds: a big 2-local Sidon set from low-rank symmetric matrices . . 153

8.4 Do white-box affine extractors suffice? . 155
8.4.1 On the power of (random) low-degree polynomials 155
8.4.2 Entropy upper bounds: a reduction from d-local sources to d-local NOBF sources . . 158
8.4.3 Entropy lower bounds: a low-weight Chevalley-Warning theorem 166

8.5 Extensions to more powerful circuits . 179
8.6 Applications in complexity theory . 180

8.6.1 Complexity of sampling . 181
8.7 Future directions . 183

9 The space complexity of sampling 185
9.1 Introduction . 186
9.2 Our results . 192
9.3 The models . 195

9.3.1 Computing in small space . 195
9.3.2 Sampling in small space . 196
9.3.3 Equivalence theorems . 198

9.4 The basics . 211
9.4.1 Sampling is easier than computing . 212
9.4.2 Sampling lower bounds against input-output pairs 214
9.4.3 Sampling lower bounds against general distributions 219

9.5 Sampling lower bounds against codes . 220
9.5.1 Sampling lower bounds against list-decodable codes 220
9.5.2 Sampling upper bounds against uniquely-decodable codes 225

9.6 Sampling lower bounds via direct product theorems . 229
9.6.1 A simple lemma on amplifying statistical distance 231
9.6.2 A direct product theorem for KRVZ samplers . 233
9.6.3 A direct product theorem for ROBP samplers . 234

9.7 Applications in data structures . 239

9

9.7.1 Data structure lower bounds for storing codewords 240
9.8 Applications in communication complexity . 240

9.8.1 A simple new proof of known lower bounds for sampling disjoint sets 241
9.9 Future directions . 242

10

Chapter 1

Introduction

Randomness is a powerful tool, with rich applications across all of computer science. Unfortunately, nearly
all of these applications require access to a stream of perfectly uniform bits, while the randomness that can
be found in nature is often plagued with imperfections. This motivates the construction of randomness
extractors, which are devices that can extract clean, uniform random bits from dirty sources of randomness.
Since their introduction in the 1950s, randomness extractors have inspired a beautiful line of work, and have
become a central object of study in theoretical computer science. In this chapter, we take a deeper look at
this story, and highlight the contributions of this thesis to the magnificent theory of randomness extractors.

1.1 Randomness in computation

A perfectly fair coin is a surprisingly powerful tool. In everyday life, we have all appreciated its ability to
make a quick, impartial decision - whether that be where to eat dinner on a certain night, or who has to take
out the trash. But perhaps the best way to exploit its power is to remove it from the hands of a human, and
put it in the possession of a computer. Indeed, the use of randomness in computation is one of the great
success stories in computer science, unearthing deep applications in every corner of this rich field [Vad12].

Algorithms One of the most celebrated applications of randomness in computer science is in the design
of elegant, efficient algorithms [MR95]. While it is widely believed that every efficient algorithm that flips
coins has a deterministic counterpart that does not,1 the randomized algorithm is usually much simpler, and
noticeably more efficient. For example, a simple and quick (polynomial-time) randomized algorithm for
testing whether a number is prime has been known for nearly 50 years [Mil76, Rab80], while its (slower
and more complex) deterministic counterpart was only found quite recently, in a landmark paper of Agrawal,
Kayal, and Saxena [AKS04]. Meanwhile, many natural problems (such as polynomial identity testing) that
admit polynomial-time randomized algorithms are still not known to be in P [Sch80, Zip79, Sax09].

Cryptography Randomness is vital to the construction of almost all cryptographic primitives, such as
encryption, secret sharing, and multi-party computation [DOPS04]. As an example, consider the classical
one-time pad [Sha49], a simple encryption scheme that uses randomness to hide the contents of a message
sent over an insecure channel. In this scheme, Alice and Bob get together beforehand (in private) and agree

1In other words, there is strong evidence that BPP = P [NW94, IW97, DMOZ22], or rather that every polynomial-time
randomized algorithm can be converted into a deterministic one, at the expense of at most a polynomial slowdown in runtime.
However, there is also strong evidence that some amount of slowdown will always be required [Wil16].

11

on a uniformly random secret key Y ∼ {0, 1}n. Later, when Alice needs to send a message m ∈ {0, 1}n to
Bob, she instead sends its bitwise XOR with Y; namely, m̂ := m⊕Y. Upon receiving m̂, Bob can easily
recover Alice’s message, by computing m̂⊕Y = (m⊕Y)⊕Y = m. However, since Alice and Bob are
the only ones that know the key Y, any adversary that sees the communication m̂ just sees a sequence of
totally random bits. Thus, no information can be obtained about m, and Alice can rest assured her message
remains completely hidden. For more great examples of randomness in cryptography, see the book [KL20].

Distributed computing Several protocols in distributed computing also benefit from randomness
[GSV05]. Perhaps this is best demonstrated by the classical task of Byzantine agreement [PSL80], where
a collection of processors wish to agree on a common value. The problem is that some of the processors
are adversarial, and may try to prevent the honest processors from reaching a consensus. Depending on
the model, the processors communicate either synchronously or asynchronously. In each case, randomness
enables protocols that are otherwise impossible. Using a randomized protocol, consensus can be achieved
as long as the fraction of bad processors is less than 1/3, in both the synchronous [CC85, BOPV06] and
asynchronous settings [BO83, Bra84]. Without randomness, the best possible synchronous protocol can
handle the same number of faulty processors, but requires many more rounds of communication [PSL80].
In the asynchronous setting, no deterministic protocol can exist, even given just one bad processor [FLP85]!

Scientific computing Randomness is the core ingredient in Monte Carlo methods, which are used by
scientists to simulate complex systems in the physical world [HH64, PTVF07]. Such methods are, for
example, used to model the Earth’s climate [BT13], predict how proteins will fold [LS87], and understand
nuclear interactions [CGP+15]. Outside of the hard sciences, Monte Carlo methods have been exploited to
price various financial instruments [Boy77], and design delicious recipes for chicken [TSG23].

Combinatorics Finally, randomness can be used to construct a variety of delightful combinatorial objects,
which themselves have important applications across many areas of computer science [Vad12]. More for-
mally, using the probabilistic method [AS16], it is easy to construct key combinatorial primitives such as
expander graphs [HLW06] and error-correcting codes [GRS22]. Expander graphs are sparse graphs that
are nevertheless well-connected, and are naturally suited as cheap, robust communication networks. Error-
correcting codes, on the other hand, provide a way to add a little redundancy to data so that it can be
recovered even in the presence of many errors, and are key tools in reliable data storage and long-distance
communication. Surprisingly, these two objects are intimately connected [Vad12], and enjoy a host of un-
expected applications in algorithms [ST04], complexity theory [Din07], and cryptography [McE78].

Needless to say, randomness is a powerful force in computer science. Simply by giving a computer
some random bits, one can unlock an impressive suite of applications in algorithm design, cryptography,
distributed computing, and more. Of course, this raises the question,

How do we give a computer random bits?

Surely we cannot just fix a robotic arm onto a computer and ask it to flip a physical coin. Right?

1.2 Randomness in the wild

In the real world, computers use devices called true random number generators (TRNGs) to obtain their
random bits [JK99]. These devices generate bits by measuring unpredictable events in nature, such as mouse

12

movements, keystrokes, atmospheric noise, radioactive decay, and other quantum phenomena [HG17].2

Unfortunately, even with this wide range of sources, TRNGs can only produce bits that are weakly random:
these bits contain some level of unpredictability, but almost always have unwanted correlations and biases.3

On the other hand, almost all applications of randomness in computation (like those in Section 1.1) assume
access to bits that are perfectly random: that is, completely independent and unbiased. This is a big problem.

Almost all applications of randomness in computer science assume access to perfectly random bits,
but nature can only provide us with weakly random bits.

Before we panic, it is natural to ask if this is really such a big deal. Indeed, even though these applications
expect to receive perfectly random bits, perhaps they will do just fine if we give them the weak bits that are
available, instead. Unfortunately, this is not the case. For example, it has been known for nearly 20 years that
basic cryptographic primitives (like encryption) are impossible to implement with weak randomness alone
[DOPS04]. And even before that, the privacy of real-world data has been put at serious risk by TRNGs that
fail to generate sufficiently random strings [GW96]. More generally, however, giving imperfect randomness
to any algorithm expecting perfect randomness means throwing away all theoretical guarantees - a move
that could result in unexpected, and potentially even dangerous, behavior [FLW92]. Surely, it would be
quite concerning to board an airplane that runs on randomized algorithms with no theoretical guarantees.

As can be seen, there is an alarming gap between the weak randomness available in practice, and the
perfect randomness used in theory. In order to truly unlock the treasure trove of applications in Section 1.1,
we must bridge this gap, and find some device that can purify weak randomness into perfectly random bits.

1.3 Randomness extractors

Randomness extractors are the exact devices we need. True to their name, extractors are powerful tools that
can extract perfectly random bits out of a weak source of randomness. First introduced by von Neumann
in 1951 [vN51], these devices can easily be used to purify the output of a TRNG, immediately solving
the problem that troubled us in Section 1.2. However, ever since they were first introduced, extractors
have revealed themselves to be much more fundamental objects than ever anticipated, unearthing a host of
rich applications that extend far beyond their original intended use. Most notably, extractors have emerged
as central figures in the wonderful world of theoretical computer science [AB09], where they have had a
profound impact on an incredible number of fields, including cryptography [BBR88], complexity theory
[LY22], coding theory [Gur04], combinatorics [Li23], pseudorandomness [Vad12], and more. As a result,

The study of extractors has blossomed into its own beautiful theory,
and the goal of this thesis is to contribute to it.

To get things started, this section will provide a gentle introduction to extractor theory. We start by
formally defining extractors, connecting their definition with the original motivation from Section 1.2. Then,
in Sections 1.3.1 to 1.3.3, we overview the history of extractors, describing the origin story of each flavor of
extractor, while discussing some exciting, unexpected applications. Finally, in Section 1.3.4, we highlight
our contributions to this beautiful field of study, and provide a detailed roadmap for the rest of this thesis.

2For a crystal clear introduction to how computers generate random bits, we highly recommend the beautiful survey [HG17].
3This is due to various imperfections in the natural random sources, or the measurement process used by the TRNG.

13

A formal definition

As promised, let us begin by making everything a bit more formal. Returning to our original motivation,
recall that we wish to extract perfectly random bits out of a weak source of randomness. To formalize
this, we model the perfectly random bits as a random variable Um that is uniform over the set {0, 1}m of
bitstrings of lengthm. Our weak source, on the other hand, is modeled by a random variable X over {0, 1}n,
which holds the entire sequence of random bits that can be harvested from the source.4 Naturally, the exact
distribution of X is unknown, but we assume it comes from some known family X . Finally, the extractor is
modeled as a single deterministic function Ext : {0, 1}n → {0, 1}m, such that given as input any random
variable X ∈ X ,5 the output Ext(X) should look close to uniform Um.

Now, before we put everything together and formally define an extractor, we must elaborate on what it
means for the output to look close to uniform, and why this is even okay - after all, we originally wanted
the output to be perfect, right? As it turns out, demanding the output Ext(X) to be exactly uniform is
unnecessarily restrictive, and prevents the existence of extractors in even the simplest of settings [CFG+85].
Instead, following the suggestion of Santha and Vazirani [SV86], the extractor community has realized it
makes much more sense to simply ask that Ext(X) is close to uniform Um in statistical distance, defined as

|Ext(X)−Um| := max
S⊆{0,1}m

|Pr[Ext(X) ∈ S]− Pr[Um ∈ S]|

=
1

2

∑
z∈{0,1}m

|Pr[Ext(X) = z]− Pr[Um = z]|.

Given a guarantee that this distance is at most ε, one can ensure that any randomized algorithm or protocol
that expects uniformly random bits can instead use the bits produced by Ext(X), and err with probability at
most ε. Assuming ε is sufficiently small, this guarantee is good enough for pretty much any application of
randomness in computer science.6 With all of this in mind, we can now formally define the star of the show.

Definition 1.1 (Randomness extractor). Let X be a family of distributions over {0, 1}n. A function
Ext : {0, 1}n → {0, 1}m is called an extractor for X with error ε if for every X ∈ X ,

|Ext(X)−Um| ≤ ε.

Given the formal definition of an extractor, it is now easy to state the fundamental goal of extractor theory:

Construct the best possible extractors,
and discover new connections to other areas of theoretical computer science.

However, staring at Definition 1.1, there are a lot of parameters flying around - indeed, it may not even be
clear what it means for an extractor to be good (not to mention best possible). Towards this end, there are
four key elements that constitute an excellent randomness extractor. We go into more detail, below.

4In other words, no more randomness can be harvested from the source beyond the bits in X. If multiple samples can be taken
from the source, then this is modeled by having X represent the concatenation of those samples.

5For convenience, we often slightly abuse notation and let X denote both a random variable and its underlying distribution, and
refer to it as a source.

6We emphasize that this guarantee is much stronger than any guarantee offered by the weak randomness harvested directly from
nature. Such weak randomness can only offer a guarantee on entropy, and we will soon see that it is possible to have an excellent
entropy guarantee while unfortunately being extremely far from uniform in statistical distance.

14

The four essential elements of a great randomness extractor

First and foremost, we would like the extractor to work for a family of distributions X that is as general
as possible. The more general X is, the more likely it is to capture distributions one might actually find in
nature. At the same time, an extractor for a general X is much more likely to enjoy unexpected applications
outside the world of randomness extraction.

Second, we would like the extractor to output as many bits as possible, m. The reason for this is pretty
self-explanatory: the more uniform bits that we can harvest from a weak source, the better. Surprisingly,
however, it is often the case that extracting just m = 1 bit of randomness is the hardest part. Given such an
extractor, well-known techniques can often be applied to boost its output length [Vaz87b, GRS06, Sha08].

Third, we would like the error ε of the extractor to be as small as possible, so that its output is as close
as possible to being perfectly uniform. Just like with the output length, even getting nontrivial error ε < 1/2
is extremely challenging.7 Unlike the output length, however, there are no standard ways to bootstrap an
extractor with nontrivial error into one that achieves notably low error. This is troublesome, given the fact
that many cryptographic applications require random bits that are extremely close to uniform [DOPS04].

Finally, we would like the extractor to be explicit, in the sense that it should be deterministic and effi-
ciently computable. More formally, given an input x ∈ {0, 1}n, the output of the extractor Ext(x) should
be computable by a deterministic Turing machine in time polynomial in n.8 This restriction on runtime
comes from the standard notion of efficiency in complexity theory, while the desire for the Turing machine
be deterministic (instead of randomized) comes from the original motivating application of an extractor.9

Surprisingly, if we were actually allowed to use unlimited random bits, it is often trivial to construct an
extractor. Indeed, assuming an extractor actually exists for a family X , it is almost always the case that a
uniformly random function Ext : {0, 1}n → {0, 1}m is an optimal extractor for X , and this can be shown
via a straightforward application of the probabilistic method (Section 1.1). A key goal in extractor theory is
to come up with explicit constructions with parameters that come close to matching these probabilistic ones.

From which distributions should we extract?

Needless to say, there are many factors to keep in mind when trying to construct a randomness extractor.
However, they can all be easily remembered as follows.

We would like to construct an explicit extractor for the most general possible family X ,
which outputs as many bits as possible m with the lowest possible error ε.

Thus, after picking a family of distributions X , the goal is clear: construct an explicit extractor for X
that has the longest possible output length and lowest possible error. It is less clear, however, which family
of distributions X we should try to extract from. Of course, as discussed, we would like X to be as general
as possible - but it is not exactly clear what is possible. In particular, if X contained all distributions over
{0, 1}n, then there is clearly no way to extract from this family. This is simply because it would include
random variables X ∈ X that always output the same value, which would force any extractor called on X
to always output the same value. Thus, the first question we must ask is:

7In fact, such nontrivial extractors even have their own name (dispersers), and are deeply connected to combinatorics [Li23].
8To make this condition completely formal, we must actually think of the family of distributions X as an infinite sequence

of families (Xn)n∈N, where each Xn contains distributions over {0, 1}n. Similarly, the extractor actually consists of a family of
extractors (Extn)n∈N where each Extn is of the form Extn : {0, 1}n → {0, 1}m. Then, we say the family of extractors (Extn)n∈N
is explicit if there exists a single deterministic Turing machine M that computes M(x) := Ext|x|(x) in time polynomial in |x|.

9Extractors were introduced to cope with the fact that perfect coin flips are not available in nature. Thus, allowing the extractor
to be computable by a randomized Turing machine (which assumes access to perfect coin flips) seems circular, to say the least.

15

What is the most general family of distributions X
that we can (nontrivially) extract from?

As it turns out, this is the question that has fueled the development of much of extractor theory over the
past 70 years. In the sections that follow (Sections 1.3.1 to 1.3.3), we tell this story.

1.3.1 On the existence of extractors

The origins of extractor theory can be traced all the way back to the 1950s, when von Neumann [vN51] asked
whether it is possible to simulate a perfect coin by flipping one that is far from perfect.10 In other words, von
Neumann asked to extract from the family of distributions X of the form X = (X1,X2, . . . ,Xn), where
each Xi is an independent random bit with some fixed unknown bias δ. He provided an elegant solution,11

and unknowingly launched a brand new field at the intersection of computer science and mathematics.
However, in the decades that followed, interest in this question remained surprisingly sparse. While a

handful of papers emerged from the statistics community that sought to improve upon von Neumann’s work
[Sam68, HS70, Eli72, Dwa72, BL73, SW84], it wasn’t until FOCS 1984 that extractors truly caught the
eye of theoretical computer scientists. There, two of the earliest known papers on extractor theory were
published [Blu86, SV86], and the quest to extract from the most general possible family X began.

In the first paper, Blum [Blu86] considered a model that generalized von Neumann’s independent coin
flips by allowing the flips to be somewhat dependent. More formally, he studied the family X of sources
generated by finite state Markov chains. In the second paper, Santha and Vazirani [SV86] considered an
even more general family X , which they referred to as semi-random sources.12 These sources could consist
of arbitrarily correlated bits, as long as each bit had bounded bias conditioned on any fixing of the bits
that came before it. The following year at STOC and FOCS, a flurry of new papers (and models) appeared
[Vaz87b, VV85, CG88, CFG+85, BL85], and a foundation for the theory of extractors began to take hold.

On the introduction of entropy to extractor theory However, as more and more models emerged, it
became less clear where things were headed. While the ultimate goal was to extract from the most general
possible family X , it was still not obvious what such a family looks like. One reason was the approach
taken above, in which one would start with the simple model of von Neumann, remove some assumption,
and hope to still extract. This led to a motley crew of distribution families, with no clear unifying theme. It
soon became clear that in order to extract from the most general possible family X , one should approach
the problem from the other end. In particular, one should start with the family of all distributions, add some
(minimal) assumption, and hope to now be able to extract. But what (minimal) assumption should we add?

Returning to our example from just before Section 1.3.1, let’s recall the simple reason it was impossible
to extract from the familyX of all distributions: this family contains constant random variables, which force
the output of any extractor to be constant. Thus, if we want to have any hope of extracting, the absolute
minimum assumption we can make is that X does not contain any constant random variables. That is,

In order for randomness extraction to be possible,
each source must contain some amount of randomness.

Of course, this immediately raises the question of how to define the notion of randomness. Here, the most
tempting option might be via entropy, which has long been the most classical way to measure randomness,

10For those seeking a job in finance, take note: this is often asked as an interview question at various hedge funds.
11Pair up the bits, look for the first mismatched pair, and output the first bit in that pair. If no such pair exists, simply output 0.
12Today, these are affectionately known as Santha-Vazirani sources.

16

ever since it was first introduced by Shannon in his seminal paper that founded information theory [Sha48].
Given a random variable X ∼ {0, 1}n, Shannon defined its entropy as

H(X) := Ex∼X log

(
1

Pr[X = x]

)
=

∑
x∈support(X)

Pr[X = x] · log
(

1

Pr[X = x]

)
.

Now known as Shannon entropy, this quantity measures the average amount of “information” revealed by
observing a random variable. It is easy to verify that Shannon entropy of a random variable X ∼ {0, 1}n
ranges between 0 (for a constant random variable) and n (for a uniform random variable) - meaning that the
higher the Shannon entropy of a random variable, the more randomness it contains, and the easier it should
be to extract. Thus, it is natural to ask whether Shannon entropy can help provide the minimal assumption
we are looking for in order to enable randomness extraction. In other words, one might ask,

Can we extract from the family X of all distributions
with sufficiently high Shannon entropy?

Unfortunately, the answer to this question is a resounding no. In fact, there even exist families X con-
sisting of just one random variable X ∼ {0, 1}n with high Shannon entropy from which (high quality)
extraction is impossible. For example, consider a source X that outputs 0 with probability 0.99, and other-
wise samples uniformly from {0, 1}n. The Shannon entropy of this source is nearly 0.01n, but any extractor
receiving X as input must output some value with probability 0.99. Thus, it is impossible to construct a high
quality extractor in this setting. If we hope to eventually extract, we need a different notion of randomness.

Looking back at the challenges encountered above, one might notice that we had difficulty extracting
from a source X ∼ {0, 1}n with high Shannon entropy because such a source can still assign a large
probability to some x ∈ {0, 1}n. Thus, if we want to avoid these challenges, it is natural to propose a
definition of randomness that forces Pr[X = x] to be small for all x ∈ {0, 1}n. As it turns out, such a
definition of randomness already exists, and is known as min-entropy.

Definition 1.2 (Min-entropy). The min-entropy of a random variable X ∼ {0, 1}n is defined as

H∞(X) := min
x∈support(X)

log

(
1

Pr[X = x]

)
.

In other words, we have that H∞(X) ≥ k if and only if Pr[X = x] ≤ 2−k for all x ∈ support(X).

Just like Shannon entropy, the min-entropy of a random variable X ∼ {0, 1}n ranges between 0 and n,
and the higher the min-entropy of X, the more randomness it contains, and the easier it should be to extract.
Unlike Shannon entropy, having high min-entropy means that no value is hit with too high of a probability,
and the bad situation from before is no longer possible. In fact, it is not hard to see that min-entropy is a
strictly stronger notion of randomness, and we always have H∞(X) ≤ H(X). This means that a guarantee
on min-entropy is always more powerful than a guarantee on Shannon entropy, which raises the question:

Can we extract from the family X of all distributions
with sufficiently high min-entropy?

Inspired by the seminal paper of Santha and Vazirani [SV86], this question was first asked by Chor and
Goldreich [CG88], and later championed by Zuckerman [Zuc90]. And since it was first asked, this question
has helped lay the foundation for most of modern-day extractor theory, with the family X of sources with

17

sufficiently high min-entropy becoming the most fundamental model in the field. Indeed, this family of
sources, known as (n, k) sources,13 not only captures the minimum possible assumption one can make on a
family X in order to have any hope of extracting, but it also generalizes the early models of Blum [Blu86]
and Santha and Vazirani [SV86]. So, without further ado, let us answer: can we extract from such sources?

An impossibility result Unfortunately, as the title of this section might suggest, the answer to this question
is surprisingly no! In fact, even if each source X ∈ X has nearly the maximum possible amount of min-
entropy, then extraction is still impossible. Moreover, as it turns out, this result is not too difficult to show.14

Fact 1.1 (Classic impossibility result [CG88]). There does not exist an extractor Ext : {0, 1}n → {0, 1}
with error ε < 1/2 for the family X of all distributions with min-entropy k ≥ n− 1.

Proof. Let Ext : {0, 1}n → {0, 1} be an arbitrary candidate extractor for X . Since Ext is a deterministic
function, at least half of its inputs map to the same output. Without loss of generality, assume that half of its
inputs map to 0. That is, |Ext−1(0)| ≥ 2n−1. Consider now a random variable X ∼ {0, 1}n that is uniform
over the set Ext−1(0). Clearly Ext(X) is always 0, by definition of X. On the other hand, X is uniform over
a set of size at least 2n−1, meaning it has min-entropy k ≥ n− 1. Thus we have found a source X ∈ X for
which |Ext(X)−U1| = |0−U1| = 1/2, meaning Ext cannot be an extractor for X with error ε < 1/2.

Thus, even if each source X ∈ X has extremely high min-entropy, we still cannot extract. So, where
should we go from here? Well, let us recap what we have discussed thus far. Originally, our goal was to
construct an explicit extractor Ext : {0, 1}n → {0, 1}m for the most general possible family X , which
has the longest possible output length m and lowest possible error ε. After discussing some early work
on extractors, we realized that in order to extract from the most general possible X , we should start with
the family X of all distributions, and add the fewest possible assumptions in order to enable extraction. We
started by realizing that the minimum possible assumption is that each X ∈ X contains some randomness. To
formalize the notion of randomness, we initially tried to use a lower bound on Shannon entropy, but realized
this is far too weak of a guarantee to enable extraction of any kind. Thus, we turned to a lower bound on
min-entropy, a much stronger notion than Shannon entropy. However, we proved that even in this setting,
extraction is still impossible!15 So, what else can we do? The answer is simple: add another assumption.
Towards this end, researchers have considered adding one of two possible assumptions to circumvent the
impossibility result in Fact 1.1.

• Option 1 (seed): the extractor is equipped with a short, uniform seed to help extract from the source.

• Option 2 (structure): the source is equipped with some additional structure to help enable extraction.

As it turns out, by making just one of these two assumptions, it suddenly becomes possible to extract!16

And indeed, ever since the impossibility results of the 80s [SV86, CG88], almost all of extractor theory has
branched off into two complementary directions, dedicated to the study of extractors under each assump-
tion.17 Extractors built under the first assumption are called seeded extractors, and we provide an overview

13Formally, the family X of (n, k) sources consists of random variables X ∼ {0, 1}n with min-entropy at least k.
14A (weaker) impossibility result was first shown by Santha and Vazirani [SV86] for the (smaller) family of semi-random sources.
15Recall that the impossibility result for Shannon entropy is much stronger (and more prohibitive) than the impossibility result

for min-entropy. Indeed, the former shows that there exists a source X with high Shannon entropy such that for all functions
f : {0, 1}n → {0, 1}m, it holds that f does not extract from X. The latter shows that for all functions f there exists a source X
with high min-entropy such that f does not extract from X.

16We emphasize that these assumptions are made in addition to the assumption that each source has sufficiently high min-entropy.
17As we will see, the origins of this bifurcation in extractor theory can be traced back to the pioneering work of Vazirani [Vaz87b].

18

of their history in Section 1.3.2. Extractors built under the second assumption are called seedless extractors
(or deterministic extractors), and we discuss them at length in Section 1.3.3. After that, we will have finally
completed our tour of extractor theory, and we will be ready to outline our contributions in Section 1.3.4.

1.3.2 Seeded extractors

While the origins of both seeded and seedless extractors can be traced back to the 80s [Vaz87b], the first
two decades of extractor theory were focused almost exclusively on the construction of seeded extractors.
As mentioned above, a seeded extractor is a device that extracts uniformly random bits from the family X
of sources of min-entropy at least k, with the help of an additional short, uniformly random seed. More
formally, a (k, ε)-seeded extractor is a deterministic function sExt : {0, 1}n × {0, 1}d → {0, 1}m such that
given any source X ∼ {0, 1}n with min-entropy at least k, and an independent uniform seed Y ∼ {0, 1}d,

|sExt(X,Y)−Um| ≤ ε.

As always, the goal is to construct an explicit extractor, which maximizes the output length, minimizes
the error, and works for the most general possible familyX (which, here, means minimizing the min-entropy
requirement k). Now, however, we have an additional parameter, d, which corresponds to the length of the
seed. Of course, we would also like this to be as small as possible.

But before we continue, you may be wondering why seeded extractors are interesting in the first place.
Indeed, extractors were originally introduced to cope with the fact that uniform randomness is not available
in nature. So, why should we be allowed to assume access to a short, uniform seed? As it turns out, in
some applications, it is actually possible to use a seeded extractor without making such an assumption. In
particular, it is sometimes possible to simulate the uniform seed via a brute-force enumeration. For example,
suppose you want to run a randomized algorithm to compute a Boolean function, but you only have access to
a weak random source X ∼ {0, 1}n. While the randomized algorithm expects to receive uniformly random
bits Um to aid in its computation, we can instead try to run the algorithm using the bits sExt(X, y), for each
fixed seed y ∈ {0, 1}d. If we take a majority vote of the outputs across these 2d trials, the result will actually
look almost identical to the output of the randomized algorithm had it received truly uniform bits Um.18

Moreover, we will have increased the runtime by a factor of at most 2d, which is small if d is small.19

Thus, assuming we have a good enough explicit seeded extractor, it is actually possible to take any
randomized algorithm that uses uniformly random bits, and make it work with weakly random bits, instead.
In other words, such an extractor could be used to simulate the complexity class BPP using weak random
sources. In fact, the desire to achieve such a simulation actually precedes the introduction of the seeded
extractor, and is what directly led to its invention! We go into a little more detail, below.

History Motivated by the classical impossibility result of Santha and Vazirani [SV86] for extracting from
semi-random sources, Vazirani was the first to ask about simulating randomized algorithms using such weak
sources [Vaz87b], while Vazirani and Vazirani were the first to show that this can actually be done [VV85].
Following these early works, several subsequent papers studied this question under increasingly general
models of weak random sources [CG88, Vaz87a, HILL99, CW89], until Zuckerman proposed simulating
randomized algorithms using weak random sources that only have a guarantee on their min-entropy [Zuc90].
These results were later improved in a paper by Zuckerman [Zuc96b], which ultimately led to the seminal
work of Nisan and Zuckerman [NZ96] that introduced the notion of seeded extractors, as defined above.

18For a rigorous treatment of this claim, we refer the reader to [Vad12, Proposition 6.15].
19This claim ignores the runtime of the seeded extractor, which is not a big deal as long as the seeded extractor is explicit.

19

Like many fascinating combinatorial objects, excellent seeded extractors are easy to construct via the
probabilistic method (Section 1.1). In particular, by selecting a function sExt : {0, 1}n×{0, 1}d → {0, 1}m
uniformly at random, it is not too difficult to show that it is a (k, ε)-seeded extractor (with high probability) as
long as it has seed length d ≥ log(n−k)+2 log(1/ε)+O(1) and output lengthm ≤ k+d−2 log(1/ε)−O(1)
[Vad12, Theorem 6.14]. Moreover, it is known that these are the best possible parameters, up to additive
constants [RT00]. However, as always, the goal is to construct explicit extractors with similarly great param-
eters, and ever since the seminal work of Nisan and Zuckerman [NZ96], researchers have worked tirelessly in
this direction [WZ99, GW97, SZ99, SSZ98, Ta-96, Zuc97, ACRT99, Ta-02, NT99, Tre01, RRV02, ISW00,
RVW02, RSW06, TUZ07, TZS06, SU05, LRVW03, GUV09, DW11, DKSS13, TU12]. After nearly two
decades of hard work, we now have near-optimal explicit constructions [LRVW03, GUV09, DKSS13], and
in particular can achieve seed length d = O(log(n/ε)) and output length m = Ω(k) [GUV09].

Applications Today, the best known explicit seeded extractors can easily be used to solve the original mo-
tivating problem of simulating BPP using weak random sources.20 However, ever since seeded extractors
were first introduced [NZ96], they have unearthed a wide array of applications that extend far beyond this
original motivation. For example, seeded extractors have become a crucial ingredient in many cryptographic
protocols [BBR88, Lu04, Vad04, DORS08], and have played a key role in several hardness of approxima-
tion results [Zuc96a, Uma99, MU02, Zuc07]. Seedless extractors have also been used to construct error-
correcting codes [TZ04, Gur04], pseudorandom generators [NZ96], expander graphs [CRVW02], and even
extractors themselves [Rao09a]! Each of these objects is incredibly powerful in its own right, boasting its
own rich collection of unexpected applications [Vad12].

Thus, seeded extractors have carved out an important legacy, which has not only impacted extractor
theory, but much of theoretical computer science as a whole. However, as we will soon see, they are not
the focus of this thesis. For a detailed survey on seeded extractors, we refer the reader to [NT99, Sha04a,
Sha11b].

1.3.3 Seedless extractors

After two decades of great success in constructing seeded extractors, most of modern extractor theory has
shifted its focus towards the construction of seedless extractors. As discussed above, a seedless extractor is
a device that extracts uniformly random bits from a family X of sources that not only have a min-entropy
guarantee of at least k, but also exhibit some sort of extra structure. More formally, a seedless extractor for
such a family X with error ε is a deterministic function Ext : {0, 1}n → {0, 1}m such that for any X ∈ X ,

|Ext(X)−Um| ≤ ε.

Indeed, such extractors are exactly captured by Definition 1.1. However, since we are now interested in
extracting from families X that exhibit some sort of extra structure, an immediate question comes to mind:

What sort of extra structure should we consider?
20A BPP algorithm A for computing a function f : {0, 1}t → {0, 1} can only be simulated with a weak source X ∼ {0, 1}n if

that source has min-entropy k ≥ nΩ(1), because otherwise the length of the source would need to be of the form n ≥ kω(1) ≥ tω(1).
Thus, the best possible simulation of BPP just requires an explicit seeded extractor sExt : {0, 1}n×{0, 1}d → {0, 1}m that works
for sources of min-entropy k ≥ nΩ(1), which has seed length d ≤ O(logn), output length m ≥ kΩ(1), and error ε = 0.01. Such
an extractor was first constructed by Trevisan [Tre01], though earlier work achieved an equally good simulation of BPP using
different techniques [ACRT99].

20

One silly idea is to assume that each source X ∈ X consists of a (long) prefix with some min-entropy,
followed by a (short) independent suffix that is uniform. Taking a second to think, one might realize that
seedless extractors for such sources are exactly the same thing as seeded extractors! In this way, seedless
extractors strictly generalize seeded extractors. However, these two types of extractors have historically been
treated as two distinct objects. This is because the study of seedless extractors has focused on extracting from
other definitions of structure, motivated by the fact that a uniform seed may not always be available.21 While
a variety of different definitions of structure have been examined, they all fall into three broad categories.

Over the years, three key flavors of structure have been considered,
giving rise to three key flavors of seedless extractors.

In what follows, we give a quick overview of each key flavor of structure, and point towards later
chapters of this thesis that provide more comprehensive surveys. Then, we will finally be ready to outline
our contributions to the wonderful world of seedless extractors, in Section 1.3.4.

Extractors for independent sources

The first key flavor of structure studied in the world of seedless extraction assumes that each source X ∈ X
actually consists of several independent chunks X = (X1,X2, . . . ,XN), each with their own min-entropy
guarantee. Known as the independent source model, this may very well be the oldest and most well-studied
setting in all of extractor theory, dating back to the very paper of von Neumann [vN51] that started the field!
However, it wasn’t until a few decades later that the modern definition of extractors for independent sources
truly began to take hold, in the seminal works of Vazirani [Vaz87b] and Chor and Goldreich [CG88]. But
ever since, they have been the subject of relentless attention [Vaz87a, BIW06, Bou05, Raz05, BKS+10,
BGK06, Rao09a, BRSW12, RZ08, BSRZ15, Li11a, Li12b, Li13b, Li13a, Li15, Coh16a, Coh19, CZ19,
CL16b, Li16, CS16a, CL16a, Coh16b, BDT19, Coh17, Li17, Lew19, Li19, Li23].

It is easy to appreciate why the independent source model has been so popular. Going back to the origin
story of extractor theory as a whole, recall that the original motivating goal was to purify the weak random-
ness found in nature (Section 1.2), so as to unlock the rich suite of applications that perfect randomness
enjoys in computer science (Section 1.1). While Fact 1.1 tells us this is simply impossible using a single
source of randomness, it says nothing about doing so using multiple, independent sources. And furthermore,
it is not unreasonable to assume that it might actually be possible to find such sources in nature - for exam-
ple, in geographically isolated locations, or emerging from completely unrelated physical phenomena. If
this is truly the case, then an extractor for independent sources can solve all of our woes.

On a more mathematical note, extractors for independent sources naturally generalize seeded extractors
(Section 1.3.2), and thereby inherit their luxurious collection of applications. But they also boast several
applications of their own, spreading across a wide variety of fields such as communication complexity
[Vaz87b], combinatorics [BRSW12], distributed computing [GSV05], and even learning theory [GRT18].
Motivated by all of this and more, the extractor community has been hard at work, eagerly pursuing new-
and-improved extractors for this setting. Today, we are happy to report that near-optimal explicit extractors
are now known [Li23].

For a detailed survey on extractors for independent sources, we refer the reader to Part I (Section 3.1).

21Moreover, in many applications (like in cryptography and distributed computing), it is not possible to simulate a uniform seed
via brute-force enumeration, as is done in Section 1.3.2 for the application of algorithm design.

21

Extractors for algebraic sources

While the independent source model may very well be the most popular setting in which to study seed-
less extraction, the algebraic source model is certainly a close second. For this next key flavor of seedless
extractor, one assumes that each source X ∈ X exhibits some sort of algebraic structure. The origins of
this setting also date back to the 80s, with the introduction of oblivious bit-fixing sources [Vaz87b, BBR88,
CFG+85]. Motivated by applications in distributed computing [CFG+85] and exposure-resilient cryptogra-
phy [CDH+00, Dod00, KZ07], oblivious bit-fixing sources X ∼ {0, 1}n consist of completely independent
bits, but only a few of which are guaranteed to be uniform (while the rest are fixed to constants). A long line
of work has successfully constructed extractors for this setting [Vaz87b, BBR88, CFG+85, CW89, Fri92,
KJS01, BS00, KZ07, GRS06, Sha08, Rao09b, GVW15, CL18], and researchers have since turned to study
a variety of other, more exotic, algebraic models.

By and far, however, the most popular model to study in the algebraic source setting is the affine source.
First introduced at the turn of the century [BSHR+01, BKS+10], affine sources offer a natural generalization
of oblivious bit-fixing sources, and are formally defined as distributions X that are uniform over an affine
subspace of Fn2 . Despite this seemingly artificial definition, extractors for affine sources have emerged as
a central figure in pseudorandomness and beyond, finding surprising applications in circuit lower bounds
[DK11, FGHK16, LY22] and extractor theory itself [DW12, Vio14, CG21]. Because of this, they have
received a lot of attention over the past three decades [BSHR+01, BKS+10, GR08, Bou07, BSK12, Rao09b,
DG10, Yeh11, BSRZ15, Li11b, Sha11a, CT15, BDL16, Li16, CGL21, HIV22, Li23], and researchers have
even turned to consider even more general models, known as polynomial [DGW09, BSG12, GVJZ23] and
variety sources [Dvi12, CT15, Rem16, LZ19, GVJZ23]. These families may very well represent the pinnacle
of the algebraic source model, unlocking new applications unable to be achieved by affine sources [HR15,
GK16, GKW21]. However, with pleasure comes pain, and few explicit constructions are known for these
extremely general models.

For a detailed survey on extractors for algebraic sources, we refer the reader to Part II (Section 6.1).

Extractors for low-complexity sources

The third and final flavor of seedless extraction steps out of the world of algebra, and back into the world
of computer science. Here, we are talking about the model of low-complexity sources. As their name
might suggest, sources in this model exhibit a sort of computational structure. A little more formally,
low-complexity sources are typically defined as distributions X that can be generated by low-complexity
computational models (such as low-depth circuits or space-bounded algorithms), by feeding them with
uniformly random bits. Like the other two classical settings discussed above, the origins of low-complexity
sources can be found in the 80s, with the pioneering work of Vazirani [Vaz87b]. However, it wasn’t until the
seminal papers of Trevisan and Vadhan [TV00] and Kamp, Rao, Vadhan and Zuckerman [KRVZ11] that this
model truly took off, and they have since enjoyed their fair share of time in the spotlight [Vaz87b, Vaz87a,
TV00, KM04, KM05, KRVZ11, DW12, Vio14, Vio12b, CL16b, Li16, CGGL20, CG21, CL22, ACG+22,
Li23, BDSGM23].

Unlike the other two models in which to study seedless extraction, the motivation for low-complexity
sources is a bit more philosophical in nature. As advocated for by Trevisan and Vadhan [TV00] and scholars
before them [Lev86], there is an argument to be made that such sources might actually be a good model for
distributions that one might find in the wild. Indeed, it is not unreasonable to think that nature may behave
like a low-complexity process, acting on some true randomness out there somewhere in the universe (say,
arising from quantum phenomena), and the random bits that we can harvest are simply an outcome of this

22

low-complexity process.
In case you remain unconvinced of the motivation above, there are, of course, many reasons to study

low-complexity sources from a mathematical perspective. Most notably, due to their definition, they are
intimately connected to complexity theory. In particular, not only do extractors for such sources offer an-
other concrete approach towards new circuit lower bounds [LZ19], but they also play a fundamental role in
burgeoning new area of complexity called the complexity of sampling [Vio12a]. Moreover, low-complexity
sources are exceedingly general, capturing a host of other well-studied models in extractor theory.

For a detailed survey on extractors for low-complexity sources, we refer the reader to Part III (Section 7.1).

1.3.4 Our contributions

We have finally finished our brief tour through the wonderful world of randomness extractors. As we have
seen, extractors have become fundamental figures in complexity theory and beyond, and were originally mo-
tivated by the fact that nearly all applications of randomness in computer science expect access to perfectly
uniform bits (Section 1.1), yet nature simply doesn’t have the capacity to produce such perfect random-
ness (Section 1.2). And while we would like to cope by constructing a single extractor that can purify all
sources of randomness, we have observed that this is just not possible (Fact 1.1). Thus, research on extrac-
tors has split into two complementary settings: the seeded setting (Section 1.3.2), and the seedless setting
(Section 1.3.3), which has further been split into three different flavors of sources: independent sources,
algebraic sources, and low-complexity sources. However, while a beautiful line of work has culminated in
near-optimal seeded extractors, there is still much work to be done on seedless extractors.

This brings us to the main contribution of this thesis:

We construct new-and-improved seedless extractors
for each of the three most popular flavors of structure.

In the blurbs that follow, we give a sneak peak into some of these results, and lay out a roadmap for the
remainder of this thesis. Should the reader ever get lost, we strongly encourage them to frequently check
back in at the table of contents. Indeed, great care was taken to ensure that this thesis can be easily navigated
- and understood - simply by looking there. With all of that being said, let’s trek onward to give a brief view
of some of our main results, before embarking on a journey into the body of this thesis.

Part I Extractors for independent sources

As we saw above, the independent source model is the oldest and most well-studied setting in seedless ex-
traction. Recall that in this setting, one assumes access to a weak source X that actually consists of several
independent sources X = (X1,X2, . . . ,XN), each guaranteed to contain some min-entropy. However,
while a rich line of work has culminated in excellent extractors for this setting, it is not always clear how
realistic this setting really is. In particular, in real life, nature may sometimes produce samples with no
entropy at all, or - worse still - samples that are correlated. Motivated by this and applications in cryptogra-
phy, Part I of this thesis focuses on constructing robust extractors for independent sources, which can easily
handle these types of tricky situations.

Chapter 3 Extractors for adversarial sources Our first type of robust extractor for independent sources
can extract uniform bits from so-called adversarial sources. Adversarial sources naturally generalize the
independent source model, by consisting of N independent sources X = (X1, . . . ,XN), but allowing some
of the sources Xi to be bad in the sense that they contain no entropy at all. This setting captures unreliable

23

sources (e.g., Zener diodes) which are known to occasionally produce bits with no entropy, and furthermore
has applications in generating a cryptographic common random string (CRS) in the presence of adversaries.
Here, our main contribution is as follows.

We explicitly construct the first
extractors for adversarial sources for polylogarithmic entropy.

Our adversarial source extractors enjoy an entropy requirement that is similar to the best known ex-
tractors for the (less general) independent source setting [Li15, Li23]. Furthermore, the previous best
extractors for adversarial sources (implicit in [KRVZ11]) required min-entropy k ≥ n0.99, and thus our
k ≥ polylog(n) entropy requirement is an exponential improvement. In order to construct our extractors,
we establish new connections to coding theory, communication complexity, and extremal combinatorics,
and build a variety of new pseudorandom objects along the way.

[CGGL20] Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, and Xin Li. Extractors for adversar-
ial sources via extremal hypergraphs. In 52nd Annual Symposium on Theory of Computing (STOC
2020), pages 1184–1197. ACM, 2020

[CG21] Eshan Chattopadhyay and Jesse Goodman. Improved extractors for small-space sources. In
62nd Annual Symposium on Foundations of Computer Science (FOCS 2021), pages 610–621. IEEE,
2021

Chapter 4 Leakage-resilient extractors Our second type of robust extractor for independent sources can
extract uniform bits from a source X consisting of N independent sources X = (X1,X2, . . . ,XN), and
its output remains uniform even conditioned on the output of multiple leakage functions, each called on
0.99N of the input sources. Such an object, called a leakage-resilient extractor, was originally motivated
by applications in leakage-resilient cryptography [KMS19]. There, the authors posed as an open problem
the explicit construction of a leakage-resilient extractor for sublinear entropy. In this chapter,

We explicitly construct the first
leakage-resilient extractors for polylogarithmic entropy.

Thus, we answer the question of Kumar, Meka, and Sahai [KMS19], and in fact give an extractor that
works for exponentially less entropy. Our extractor construction is extremely simple, yet powerful enough to
have interesting implications in multiparty communication complexity and leakage-resilient cryptography.
In cryptography, we obtain leakage-resilient secret-sharing schemes that are exponentially better than the
previous state-of-the-art [KMS19]. In communication complexity, we obtain strong average-case lower
bounds against a rich spectrum of multiparty communication protocols that interpolate between the well-
studied number-in-hand (NIH) and number-on-forehead (NOF) protocols. One of our lower bounds (against
a slightly weaker definition of NOF protocols) is strong enough that, if proven in the standard NOF setting,
would yield breakthrough circuit lower bounds [Yao90, BT94, RW93].

24

[CGG+20] Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, Ashutosh Kumar, Xin Li, Raghu
Meka, and David Zuckerman. Extractors and secret sharing against bounded collusion protocols.
In 61st Annual Symposium on Foundations of Computer Science (FOCS 2020), pages 1226–1242.
IEEE, 2020

Chapter 5 Explicit extremal designs For the third and final chapter of Part I we construct a new object
which, at first glance, looks totally unrelated to extractors. In particular, we construct an extremal combi-
natorial design. Designs are a special type of well-balanced hypergraph, which have become fundamental
primitives in the theory of pseudorandomness. More formally, an (n, r, s)-design is just a set system over
n elements, where each set has size r, and every pair of sets have intersection size < s. Most applications
of designs in pseudorandomness [NW94, Tre01, RRV02] require them to be extremal in the sense that they
have a lot of hyperedges, and it is well-known how to construct such designs via the method of condi-
tional expectations [NW94]. In this chapter, we explicitly construct a different flavor of extremal designs
altogether. In particular,

We explicitly construct the first
designs with small independence number.

Prior to our work, the only known constructions of such designs were probabilistic [RŠ94], and our
explicit designs achieve parameters that are nearly as good. Our construction is elementary, and simply
combines some old results from coding theory [BRC60, Hoc59] with some recent bounds from additive
combinatorics [Sid18]. Moreover, these designs play a crucial role in the construction of adversarial source
extractors in Chapter 3.

[CG21] Eshan Chattopadhyay and Jesse Goodman. Improved extractors for small-space sources. In
62nd Annual Symposium on Foundations of Computer Science (FOCS 2021), pages 610–621. IEEE,
2021

Part II Extractors for algebraic sources

In the next part of the thesis, we turn our attention towards the model of algebraic sources. Here, recall from
above that the most well-studied setting within this family are affine sources, which are simply distributions
that are uniform over an affine subspace of Fn2 . Our main contribution is a new state-of-the-art extractor.

Chapter 6 Extractors for affine sources In a little more detail, we are motivated to study affine extractors
given that they have been gradually emerging as fundamental primitives within complexity theory and the
theory of pseudorandomness. In particular, not only have they recently been used to get new state-of-the-
art circuit lower bounds [LY22], but a number of surprising connections have also recently been established
between affine sources and other well-studied models [DW12, Vio14, CG21]. Despite this, prior to our work,
the state-of-the-art extractors for affine sources noticeably lagged behind the state-of-the-art in extractors for
independent sources. In this chapter, we resolve this discrepancy.

We explicitly construct the first
extractors for affine sources for almost logarithmic entropy.

25

Prior to our work, the best-known affine extractors [Li16] required entropy k ≥ logC n for some large
constant C, and our improved k ≥ log1+o(1)(n) entropy requirement is near-optimal [ABGSD21]. Our
techniques closely follow a line of work that achieves a similar entropy improvement for the independent
source setting [CL16a, Coh16b, Mek17, Coh17, Li17, Li19], except we are forced to develop a host of new
pseudorandom objects to deal with the affine correlations that arise from using just one source.

[CGL21] Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. Affine extractors for almost
logarithmic entropy. In 62nd Annual Symposium on Foundations of Computer Science (FOCS 2021),
pages 622–633. IEEE, 2021

Part III Extractors for low-complexity sources

For our final act, we study the third and final flavor of structured sources, namely, low-complexity sources.
Within this model, the two most well-studied settings are sources generated by space-bounded algorithms,
and sources generated by low-depth circuits. We give results in both directions, and launch a systematic
study into a closely related new subfield of complexity theory.

Chapter 7 Extractors for small-space sources Within the family of low-complexity sources, the model
of small-space sources may very well be the oldest. Indeed, while such sources were formally introduced in
2006 [KRVZ11], their roots trace all the way back to the 80s [Vaz87b]. Small-space sources, as their name
suggests, model distributions that can be generated by space-bounded algorithms. Beyond their natural
definition, these sources capture a variety of other well-studied models, meaning that an extractor for small-
space sources can be quite the versatile tool. In this chapter, we construct new state-of-the-art extractors for
this setting.

We explicitly construct the first
extractors for small-space sources for polylogarithmic entropy.

Previously, the best extractors [CL16b] required entropy k ≥ 2log
0.51(n), and thus the k ≥ polylog(n)

entropy requirement of our extractors offers a near-exponential improvement. In the more challenging low-
error setting, we improve the entropy requirement from k ≥ n0.99 [KRVZ11] to k ≥ n0.51. In order to
construct our low-error extractors, we exploit a known reduction from small-space sources to adversarial
source, by combining it with our new extractors for adversarial sources from Chapter 3. On the other hand,
in order to obtain our extractors that work for polylogarithmic entropy, we provide a novel reduction from
small-space sources to affine sources, and combine it with the excellent affine extractor of Li [Li16] (or, for
an even better entropy requirement, our new affine extractors from Chapter 6). Beyond its application in
getting better extractors for small-space sources, we view our new reduction as an independently interesting
structural result, which helps highlight the role of affine sources as a unifying model in extractor theory.

[CG21] Eshan Chattopadhyay and Jesse Goodman. Improved extractors for small-space sources. In
62nd Annual Symposium on Foundations of Computer Science (FOCS 2021), pages 610–621. IEEE,
2021

Chapter 8 Extractors for circuit sources Next, we explore the other well-studied flavor of low-
complexity sources: namely, circuit sources. Circuit sources model distributions that can be sampled by

26

Boolean circuits, and they were the original model studied in the seminal paper of Trevisan and Vadhan
[TV00]. Depending on the exact type of circuit that generates the source, the difficulty of extracting from
it can greatly vary. Towards this end, researchers have generally focused on the simplest possible type
of circuits: namely, low-depth circuits. However, even here, constructing extractors for such sources is
remarkably hard. In particular, even for circuits of constant depth, the state-of-the-art extractor still requires
min-entropy k ≥

√
n, and has been stuck here for quite some time [DW12, Vio14]. This is in stark

contrast to almost every other basic model that has been studied - most of which readily admit extractors
for polylogarithmic entropy by now [Li23]. In this chapter, we provide some hope that this barrier will soon
be broken.

We show that random degree 3 polynomials break the
√
n barrier,

and fully characterize the power of low-degree polynomials as extractors for such sources.

The reason we study (random) low-degree polynomials as candidate extractors is simple: not only is this
class of functions small (thereby yielding semi-explicit constructions), but they are also well-known to do a
great job at extracting from stubborn classes of sources [CT15]. Most notably, however, understanding the
power of low-degree polynomials as extractors amounts to proving interesting structural results about these
fundamental algebraic objects. In this vein, we prove a new type of Chevalley-Warning theorem, which
asserts the existence of low-weight solutions to systems of polynomial equations. We also obtain a new
reduction from constant-depth circuit sources to a much more specialized model, which is guaranteed to
have uniform bits at certain (unknown) locations. We hope that this new reduction will ultimately facilitate
the construction of truly explicit extractors for this challenging model.

[ACG+22] Omar Alrabiah, Eshan Chattopadhyay, Jesse Goodman, Xin Li, and João Ribeiro. Low-
degree polynomials extract from local sources. In 49th International Colloquium on Automata,
Languages, and Programming (ICALP 2022), volume 229 of LIPIcs, pages 10:1–10:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022

Chapter 9 The space complexity of sampling Up until this point, Part III has focused on constructing
extractors for sources that can be sampled by low-complexity computational models. For the final chapter
of this thesis, we ask an even more fundamental question: What do these sources even look like? In other
words, we ask what distributions can - and cannot - be sampled by algorithms with bounded computational
resources. This question lies at the heart of a rich new area of complexity theory, called the complexity of
sampling [Vio12a]. In this new area of study, the goal is to understand the power of our favorite computa-
tional models for the task of sampling from distributions. Lower bounds in this setting are more difficult to
obtain than classical lower bounds, and often lead to unexpected tools, tricks, and techniques. As a result,
the complexity of sampling has recently seen a huge wave of interest. Despite this exciting progress, prior
to our work, nothing was known about the complexity of sampling with limited memory. In this chapter, we
initiate such a study.

We launch a systematic study into the space complexity of sampling.
We obtain strong explicit lower bounds, and prove a more general direct product theorem.

Our direct product theorem is the first result of its type, and our sampling lower bounds imply (via a
known connection) new data structure lower bounds for storing codewords. Moreover, in order to lay the
groundwork for this new direction, we prove several other results, including a collection of equivalence

27

theorems that provide a black-box way to convert sampling lower bounds into computing lower bounds. We
view the complexity of sampling as a fundamental new field at the intersection of extractors and complexity
theory, and we are see excited to see where it goes next.

[CGZ22] Eshan Chattopadhyay, Jesse Goodman, and David Zuckerman. The space complexity of
sampling. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), volume
215 of LIPIcs, pages 40:1–40:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022

28

Chapter 2

Preliminaries

We start with some preliminaries that will be used throughout. We aim to keep this chapter light, and only
include a few basic definitions and results that are exploited throughout the entirety of this thesis. All other
tools and techniques that we need will be introduced naturally in the chapters in which they are used.

2.1 Notation

To start, let us introduce some basic notation. We let N := {1, 2, . . . , } denote the natural numbers, and for
any n ∈ N, we define [n] := {1, 2, . . . , n}. As usual, R is the set of real numbers, C is the set of complex
numbers, and for a prime power q, Fq is the finite field of size q. This thesis will mostly focus on the finite
field Fq = F2, which is just the set {0, 1} with addition and multiplication modulo 2. Occasionally, we will
also consider the n-dimensional vector space over this field, which we denote as Fn2 . Throughout the thesis,
we treat N and n as different variables, with no relation to one another (in particular, we do not adopt the
typical convention that N = 2n). Finally, all logarithms are base 2.

Indexing

For a bitstring x ∈ {0, 1}n, we let xi ∈ {0, 1} denote the value held at its ith coordinate, and for a set
S ⊆ [n] we let xS ∈ {0, 1}|S| denote the the concatenation of bits xi, i ∈ S in increasing order of i. We also
exploit the shorthand x−i to denote the string x[n]\{i}, and we let xi→j := (xi, xi+1, . . . , xj). We build on
the latter notation, and let x≤i := x1→i and x<i := xi→i−1. Similarly, x≥i := xi→n and x>i := xi+1→n.

We extend all of this to domains beyond {0, 1}, and heavily use the following notation, which is crucial
to internalize. Given a domain D and some string x ∈ Dn, we let xi ∈ D denote the value held at its ith

coordinate, and for a set S ⊆ [n] we let xS ∈ D|S| denote the concatenation of values xi, i ∈ S in increasing
order of i. For example, if x ∈ ({0, 1}t)n, then x1 ∈ {0, 1}t holds the first t consecutive bits in x, x2 holds
the next t consecutive bits, and so on, all the way to xn. Finally, for x ∈ ({0, 1}t)n, we define xi,j := (xi)j .
One last note about bitstrings: we define the support of x ∈ {0, 1}n as the set of coordinates i where xi = 1.

Operations

To complete this section, we explain our notation for several common operations. We use the standard
notation

(
n
k

)
to denote a binomial coefficient, and we write

(
n
≤k
)
:=
∑k

i=0

(
n
i

)
. We overload this notation

for sets as follows: given a set S, we let
(
S
k

)
denote the collection of all subsets of S of size k, and

(
S
≤k
)

the
collection of subsets of size at most k. Speaking of sets, given some set S ⊆ [n] and x ∈ {0, 1}n, we define

29

xS :=
∏
i∈S xi, which should not be confused with the notation xS from above. Naturally, we let x∅ := 1.

Given a set S ⊆ [n], we write S to denote its complement, and given sets A,B ⊆ Fn2 , we let

A+B := {a+ b : a ∈ A, b ∈ B}

denote the sumset of A and B. Returning to bitstrings, given some bitstrings x, y ∈ {0, 1}n, we let x ◦ y ∈
{0, 1}2n denote their concatenation: notably, this notation does not denote function composition in this
thesis. Finally, we write x⊕ y to denote the bitwise XOR of these strings - or rather their sum when they are
treated as vectors in Fn2 . For this reason, we interchangeably write x⊕ y and x+ y.

2.2 Probability

We now overview some basic notions from probability theory that are heavily used throughout this thesis.
Notably, we will only ever need discrete probability theory. Here, random variables are denoted by boldface
letters such as X, and we let support(X) denote its support. For a set S, we write X ∼ S to denote
that support(X) ⊆ S. Moreover, all notation from Section 2.1 carries over to any discussion of random
variables. For example, given a random variable X ∼ {0, 1}n, the notation Xi denotes the value held at
its ith bit. Finally, the uniform distribution over {0, 1}m is denoted by Um, and whenever it appears in an
expression with other random variables, it is assumed to be independent of them all. However, whenever
Um appears multiple times in the same expression or formula, this represents multiple copies of the same
random variable. For example, the random variable (Um,Um) hits each string (x, x) ∈ {0, 1}m × {0, 1}m
with probability 2−m.

Statistical distance

The primary way we measure the distance between two random variables is via statistical distance.

Definition 2.1 (Statistical distance). For any random variables X,Y ∼ V , we define

|X−Y| := max
S⊆V
|Pr[X ∈ V]− Pr[Y ∈ V]| = 1

2

∑
v∈V
|Pr[X = v]− Pr[Y = v]|

as the statistical distance (or total variation distance) between X and Y.

We say that X,Y are ε-close if |X −Y| ≤ ε, and denote this as X ≈ε Y. On the other hand, we say
that X,Y are ε-far if |X−Y| > ε, and denote this by X ̸≈ε Y. As it turns out, statistical distance is truly
a distance (i.e., metric), in every sense of the word. We record the following result.

Fact 2.1 (Statistical distance is a metric). For any random variables X,Y ∼ V , all of the following hold.

• |X−Y| ≥ 0, with equality holding if and only if X ≡ Y. (Positivity)

• |X−Y| = |Y −X|. (Symmetry)

• |X−Y| ≤ |X− Z|+ |Z−Y|, for any random variable Z ∼ V . (Triangle inequality)

The triangle inequality will be especially useful. Next, if two random variables have identically dis-
tributed marginals, we can condition on these without changing their statistical distance (in expectation).

30

Fact 2.2 (Averaging principle). For any random variables X,Y ∼ V and Z,Z′ ∼ Z such that Z ≡ Z′,

|X ◦ Z−Y ◦ Z′| = Ez∼Z[|(X | Z = z)− (Y | Z′ = z)|].

Proof. By the definition of statistical distance, we have

2|X ◦ Z−Y ◦ Z′| =
∑
(v,z)

|Pr[X ◦ Z = (v, z)]− Pr[Y ◦ Z′ = (v, z)]|

=
∑
(v,z)

Pr[Z = z]|Pr[X = v | Z = z]− Pr[Y = v | Z′ = z]|

=
∑
z

Pr[Z = z]
∑
v

|Pr[X = v | Z = z]− Pr[Y = v | Z′ = z]|

= 2Ez∼Z[|(X | Z = z)− (Y | Z′ = z)|].

Data-processing inequality

Perhaps the most fundamental fact about statistical distance is the data-processing inequality. Almost all
facts about statistical distance can be obtained via this simple observation.

Fact 2.3 (Data-processing inequality). For any random variables X,Y ∼ V and any function f : V →W ,

|X−Y| ≥ |f(X)− f(Y)|.

Proof. By definition of statistical distance, there is a set T ⊆W where |Pr[f(X) ∈ T]−Pr[f(Y) ∈ T]| =
|f(X)− f(Y)|. Now, consider the set S∗ ⊆ V defined as S∗ := {v ∈ V : f(v) ∈ T}. We have

|X−Y| ≥ |Pr[X ∈ S∗]− Pr[Y ∈ S∗]|
= |Pr[f(X) ∈ T]− Pr[f(Y) ∈ T]| = |f(X)− f(Y)|.

As it turns out, if f is injective over the supports of X,Y, then this inequality becomes tight. In other
words, the fact below follows immediately from two applications of the data-processing inequality.

Corollary 2.1 (Data-processing equality). For any random variables X,Y ∼ V and function f : V → W
that is injective over support(X) ∪ support(Y),

|X−Y| = |f(X)− f(Y)|.

Proof. Since f is injective over support(X) ∪ support(Y), there is some function f−1 : W → V such that
f−1(f(X)) ≡ X and f−1(f(Y)) ≡ Y. Thus, by the data-processing inequality (Fact 2.3),

|X−Y| ≥ |f(X)− f(Y)| ≥ |f−1(f(X))− f−1(f(Y))| = |X−Y|,

which immediately implies the claimed result.

31

Convex combinations

Finally, we say that X is a convex combination of distributions {Yi} if there exist probabilities {pi} sum-
ming to 1 such that X =

∑
i piYi, meaning that X samples from Yi with probability pi. To start, one silly

(but important) observation is that a convex combination of convex combinations is a convex combination.
More formally, if X is a convex combination of distributions {Yi}, and each Yi is a convex combination
of some {Zi}, then X is a convex combination of distributions {Zi}. Getting a little more serious, the
following fact is crucial in many extractor proofs.

Fact 2.4 (Convex combination of close distributions is close). Let X,Q ∼ V be any two random variables.
Suppose that X is a convex combination of distributions X =

∑
i∈[t] piYi, where for each Yi we have

|Yi −Q| ≤ ε. Then
|X−Q| ≤ ε.

Proof. By definition of statistical distance, there is a set S ⊆ V such that |X−Q| = |Pr[X ∈ S]−Pr[Q ∈
S]|. And by definition of convex combination,

|Pr[X ∈ S]− Pr[Q ∈ S]| =

∣∣∣∣∣∑
i

pi Pr[Yi ∈ S]−
∑
i

pi Pr[Q ∈ S]

∣∣∣∣∣
≤
∑
i

pi|Pr[Yi ∈ S]− Pr[Q ∈ S]| ≤ ε,

which completes the proof.

It is natural to ask whether the opposite of such a result can be proven. Namely, is a convex combination
of far distributions far? With a little thought, one might realize the answer must is a resounding no: given
an arbitrary distribution Q, we can write it as a convex combination of random variables Q =

∑
i piQi such

that each Qi is constant. In this case, each |Yi −Q| is huge, yet clearly, |
∑

i piYi −Q| = 0. As it turns
out, however, if there are not too many participants in the convex combination, then such a result can be
proven! We show that for any distribution Q, a convex combination of not-too-many distributions, each far
from Q, is itself far from Q. This slightly generalizes a result from [Vio20], where it was shown to hold for
convex combinations of the form

∑
i piYi, where each pi is the same.

Fact 2.5 (Convex combination of (not too many) far distributions is far). Let X,Q ∼ V be any two random
variables. Suppose that X is a convex combination of t distributions X =

∑
i∈[t] piYi, where for each Yi

we have |Yi −Q| ≥ 1− ε. Then
|X−Q| ≥ 1− tε.

Proof. Let Q denote the support of Q. By definition of statistical distance, we know that for each i ∈ [t]
there is a set Si such that |Yi −Q| = Pr[Q ∈ Q− Si]− Pr[Yi ∈ Q− Si] = 1− (Pr[Q ∈ Si] + Pr[Yi ∈
Q− Si]). And by the lemma hypothesis, we know that Pr[Q ∈ Si] + Pr[Yi ∈ Q− Si] ≤ ε.

Now, define S =
⋃
i Si. By definition of statistical distance, |X −Q| ≥ 1 − (Pr[Q ∈ S] + Pr[X ∈

Q − S]). Thus it suffices to show Pr[Q ∈ S] + Pr[X ∈ Q − S] ≤ tε to complete the proof. Towards this
end, observe that we can write 1 as

∑
j pj to obtain

Pr[Q ∈ S] ≤
∑
i∈[t]

Pr[Q ∈ Si] =
∑
i,j∈[t]

pj Pr[Q ∈ Si].

32

Next, observe that

Pr[X ∈ Q− S] =
∑
j∈[t]

pj Pr[Yj ∈ Q− S] ≤
∑
i,j∈[t]

pj Pr[Yj ∈ Q− Si].

Thus we have

Pr[Q ∈ S] + Pr[X ∈ Q− S] ≤
∑
i,j∈[t]

pj · (Pr[Q ∈ Si] + Pr[Yj ∈ Q− Si])

≤
∑
i,j∈[t]

pj · ε ≤ tε,

as desired.

Fact 2.6 (Closeness to convex combinations). Let X be a family of distributions over V , and let X ∼ V be
a random variable for which there exists some Z ∼ Z such that

Pr
z∼Z

[(X | Z = z) /∈ X] ≤ ε.

Then X is ε-close to a convex combination of distributions from X .

Proof. Let Z∗ ⊆ Z hold all z such that (X | Z = z) ∈ X . Pick an arbitrary z∗ ∈ Z∗ and consider the
convex combination

X′ :=
∑
z∈Z∗

Pr[Z = z] · (X | Z = z) +
∑
z /∈Z∗

Pr[Z = z] · (X | Z = z∗).

By construction, X′ is a convex combination of distributions from X . On the other hand, X is a convex
combination of the form

X =
∑
z∈Z∗

Pr[Z = z] · (X | Z = z) +
∑
z /∈Z∗

Pr[Z = z] · (X | Z = z).

By definition of convex combination, it is straightforward to verify that for any S ⊆ {0, 1}n,

|Pr[X ∈ S]− Pr[X′ ∈ S]|

= |
∑
z /∈Z∗

Pr[Z = z] · (Pr[X ∈ S | Z = z∗]− Pr[X ∈ S | Z = z])|

≤ Pr[Z /∈ Z∗]
≤ ε.

Thus, we get that X is ε-close to X′, a convex combination of distributions from X , as desired.

2.3 Extractors

We now turn towards some preliminaries on extractors. We start by reviewing some basic definitions that
we highlighted in the introduction, before discussing the powerful notion of reductions between extractors.

33

The basics

We repeat some basic definitions from the introduction, so that all of the necessary technical preliminaries
can be found in one place. First, let us recall the definition of an extractor.

Definition 2.2 (Extractor). Let X be a family of distributions over {0, 1}n. A function Ext : {0, 1}n →
{0, 1}m is called an extractor for X with error ε if for every X ∈ X ,

|Ext(X)−Um| ≤ ε.

For short, we will sometimes simply call such an object an ε-extractor forX . Now, a nontrivial extractor
has error ε < 1 − 2−m, as a function that outputs the all zeroes string always achieves error ε = 1 − 2−m.
A weaker object, which also boasts an impressive list of applications, is a disperser.

Definition 2.3 (Disperser). Let X be a family of distributions over {0, 1}n. A function Disp : {0, 1}n →
{0, 1}m is called a disperser for X with error ε if for every X ∈ X ,

|support(Disp(X))| ≥ (1− ε) · 2m.

A nontrivial disperser has error ε < 1 − 2−m, as a function that outputs the all zeroes string always
achieves error ε = 1 − 2−m. Furthermore, notice that an extractor for X with error ε is automatically a
disperser for X with error ε, because if it missed > ε2m points in the support, then it must have statistical
distance > ε2m · 2−m = ε, as witnessed by these points. Given a family X of distributions, the simplest
possible object we can ask to construct is a nontrivial disperser with 1 bit of output for X . This is equivalent
to a function that is not constant on any X ∈ X .

When trying to figure out what we should extract from, we observed that a minimum possible require-
ment is that the source has some entropy. Following the lead of Chor and Goldreich [CG88] and Zuckerman
[Zuc90] and the rest of the extractor community, we used min-entropy, defined again below.

Definition 2.4 (Min-entropy). The min-entropy of a random variable X ∼ {0, 1}n is defined as

H∞(X) := min
x∈support(X)

log

(
1

Pr[X = x]

)
.

In other words, we have that H∞(X) ≥ k if and only if Pr[X = x] ≤ 2−k for all x ∈ support(X).

However, we observed that this alone is not enough to even allow a nontrivial disperser. More formally,
let us say that an (n, k)-source is a random variable X ∼ {0, 1}n with min-entropy at least k. We have the
following classic impossibility result.

Fact 2.7 (Classic impossibility result [SV86, CG88]). There cannot exist an extractor Ext : {0, 1}n →
{0, 1} with error ε < 1/2 for the family X (n, n− 1)-sources.

Proof. Let Ext : {0, 1}n → {0, 1} be an arbitrary candidate extractor for X . Since Ext is a deterministic
function, at least half of its inputs map to the same output. Without loss of generality, assume that half of its
inputs map to 0. That is, |Ext−1(0)| ≥ 2n−1. Consider now a random variable X ∼ {0, 1}n that is uniform
over the set Ext−1(0). Clearly Ext(X) is always 0, by definition of X. On the other hand, X is uniform over
a set of size at least 2n−1, meaning it has min-entropy k ≥ n− 1. Thus we have found a source X ∈ X for
which |Ext(X)−U1| = |0−U1| = 1/2, meaning Ext cannot be an extractor for X with error ε < 1/2.

34

Recall that given this impossibility result, there are two options: construct a seeded extractor, or seedless
extractor. We define them, below.

Definition 2.5 (Seeded extractor). Let X be a family of distributions over {0, 1}n. A function sExt :
{0, 1}n × {0, 1}d → {0, 1}m is called a seeded extractor for X with error ε if for every X ∈ X ,

|Ext(X,Ud)−Um| ≤ ε.

We say that the extractor is strong if we have the stronger condition |Ext(X,Ud) ◦Ud −Um ◦Ud| ≤ ε.

Note that the (non-strong) definition of a seeded extractor is captured by the general definition of an
extractor (Definition 2.2), by redefining the distribution family X to consist of random variables over d
more bits, where the suffix is uniform and independent of the prefix. However, it is often more helpful to
just treat them as separate primitives. Recall that near-optimal seeded extractors are now known, and this
thesis focuses on constructing seedless extractors, defined below.

Definition 2.6 (Seedless extractor). Let X be a family of distributions over {0, 1}n. A function Ext :
{0, 1}n → {0, 1}m is called a seedless extractor for X with error ε if for every X ∈ X ,

|Ext(X)−Um| ≤ ε.

Indeed, the keen reader will notice that this is the exact same definition as Definition 2.2. In the introduc-
tion, we mentioned that there are three different “flavors” of seedless extractors: extractors for independent
sources, extractors for algebraic sources, and extractors for low-complexity sources. These different extrac-
tors simply refer to the specific “flavor” of distribution class X which we try to extract from. We go into
much greater detail about these flavors in Part I, Part II, and Part III, respectively. For now, however, we
focus on a common technique present across almost all of the chapters: reductions between extractors.

Reductions between extractors

It is often the case that we know how to extract from a well-behaved family X , and are presented with a
complicated source Y that we do not know how to extract from. The following fact is a crucial tool in
extractor theory, which says that as long as Y is close to a convex combination of sources from X , then the
extractor for X automatically works on Y!

Fact 2.8 (Convex combinations suffice). Let X be a family of distributions over {0, 1}n, and let Ext :
{0, 1}n → {0, 1}m be an extractor for X with error ε. Then for any Y that is δ-close to a convex combina-
tion of distributions from X ,

|Ext(Y)−Um| ≤ δ + ε.

In other words, Ext is also an extractor for Y with error δ + ε.

Proof. Let X =
∑

i piXi be the convex combination of distributions from X that Y is δ-close to. Then

|Ext(Y)−Um| ≤ |Ext(Y)− Ext(X)|+ |Ext(X)−Um| (triangle inequality)

= |Y −X|+ |Ext(X)−Um| (data-processing inequality)

≤ δ +
∑
i

pi · |Ext(Xi)−Um| (definition of X and triangle inequality)

≤ δ + ε,

as desired.

35

Let us see one example of the above fact in action. Suppose we wish to construct an extractor for
independent sources. Each source is independent, and guaranteed to have min-entropy at least k. Apriori,
we cannot assume that each source has any more structure than that. However, one might reason that it could
be much easier to extract from these sources if we could assume that they are uniform over their support.
Such sources, called flat sources, have a much more “combinatorial” flavor than standard (n, k) sources.

Definition 2.7 (Flat sources). We call a source X flat if it is uniformly distributed over its support.

As it turns out, the following classical result shows that, in fact, we can assume that an arbitrary (n, k)
source is flat when trying to extract!1

Fact 2.9 (Flatness for free [CG88]). Every (n, k)-source is a convex combination of flat (n, k) sources.

The proof that we provide is adapted from [Vad12, Lemma 6.10], and is due to Kalai.

Proof. Suppose we could define a sequence (“coupling”) of random variables (X1, . . . ,X2k) over the same
space such that each marginal Xi ∼ {0, 1}n is distributed according to X, and such that there are no
collisions between marginals: namely, for any i ̸= i′, we have Pr[Xi = Xi′] = 0. Then, X is a convex
combination of flat (n, k) sources. To see why, consider the function f : ({0, 1}n)2k × [k] → {0, 1}n
defined as f(x1, . . . , x2k , i) := xi, and the random variable

X′ := f(X1, . . . ,X2k ,U),

where U is uniform and independent of X1, . . . ,X2k . Observe that X′ ≡ X, since each (X′ | U =
u) = Xu ≡ X. Furthermore, observe that X′ is a convex combination of flat (n, k)-sources, since each
(X′ | X1 = x1, . . . ,X2k = x2k) is a flat (n, k) source. Thus X′ (and therefore X) is a convex combination
of flat (n, k)-sources. All that remains is to design the sequence (X1, . . . ,X2k) from the beginning.

Towards this end, as suggested by Kalai and described in [Vad12], define {z1, . . . , zℓ} to be the support
of X, and consider the unit circle divided into ℓ half-open intervals I1, . . . , Iℓ, where Ij has length Pr[X =
zj]. Place 2k points around the circle v1, . . . , v2k such that they are evenly spaced. Perform a uniformly
random rotation of the circle, and define the random variable Xi as zj if and only if vi lands on interval Ij .
It is straightforward to verify that each Xi ≡ X. To see why each Xi will realize to a different value, recall
that the points are evenly spaced, and thus are at least 2−k units apart on the perimeter of the circle. Each
interval, on the other hand, has length Pr[X = zj] ≤ 2−k and is half-open. Thus, no two distinct Xi,Xi′

can land in the same interval.

While the above demonstrates one way to execute and exploit Fact 2.8, its main use is in showing that
an extractor for flat independent sources automatically works for arbitrary independent sources. For other
sources X, the goal is to construct a random variable Z such that (X | Z = z) is in the family X , with high
probability over fixing Z = z (and then apply Fact 2.6). But recall that the family X is typically defined via
(1) some min-entropy requirement, and (2) some structure. It is always easy to construct a random variable
Z such that (X | Z = z) contains the desired structure. Indeed, if you fix all the randomness, you just get a
constant random variable, which is as structured as possible. However, ensuring that (1) is true at the same
time is what makes this task challenging. Towards this end, the key tool in every extractor theorist’s toolbox
is the following result. It says that as long as Z has support size at most 2ℓ, then the min-entropy of X will
drop by at most (roughly) ℓ bits.

1However, caution is warranted. While the result states that an (n, k) source X is a convex combination of flat (n, k) sources,
if we originally knew that X had even more structure than being an (n, k) source, than this proof may remove that structure. Thus
it cannot be applied to assume that certain structured (n, k) sources are flat.

36

Lemma 2.1 (Min-entropy chain rule [MW97]). For any random variables X ∼ X , Y ∼ Y , and any ε > 0,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log |Y | − log(1/ε)] > 1− ε.

Proof. Define k := H∞(X). Fix some y ∈ Y . Let’s analyze the value of ky := H∞(X | Y = y). Towards
this end, note that for any x we have

Pr[X = x | Y = y] =
Pr[X = x ∧Y = y]

Pr[Y = y]
≤ Pr[X = x]/Pr[Y = y].

Thus, by definition of min-entropy, we have ky ≥ k − log(1/Pr[Y = y]). Now, suppose that ky <
k − log |Y | − log(1/ε). By the above, we know Pr[Y = y] < ε/|Y |. Thus we have

Pr
y∼Y

[ky < k − log |Y | − log(1/ε)] =
∑

y:ky<k−log |Y |−log(1/ε)

Pr[Y = y] <
∑
y

ε/|Y | = ε,

as desired.

In fact, the random variable Y that we are conditioning on often has much more structure. In many
cases, Y is in fact flat. In this case, it is easy to obtain the following, cleaner version of the min-entropy
chain rule.

Lemma 2.2 (Min-entropy chain rule, special case). For any random variables X ∼ X,Y ∼ Y such that Y
is uniform over Y , and any y ∈ Y ,

H∞(X|Y = y) ≥ H∞(X)− log |Y |.

Proof. As in the proof to Lemma 2.1, we know that H∞(X | Y = y) ≥ H∞(X) − log(1/Pr[Y = y]).
Since Y is uniform over Y , we know that Pr[Y = y] = 1/|Y |, and the result immediately follows.

Equipped with these tools, we are now ready to fight even the hairiest, worst-behaved sources.

2.4 Codes

Finally, we will complete our preliminaries by reviewing standard notions from coding theory. We start
with some basic definitions, before formally giving the definition of a code (and one of its well-known
generalizations). We conclude by recording some classical bounds on the (non)existence of such objects.

The basics

We now review some basics of coding theory, which will be used throughout the thesis. First, given a string
v ∈ {0, 1}n, we let ∆(v) := {i ∈ [n] : vi} denote its Hamming weight, and for any strings u, v ∈ {0, 1}n,
we let ∆(u, v) := {i ∈ [n] : ui ̸= vi} denote their Hamming distance. Then, given any string v ∈ {0, 1}n
and integer r ∈ {0, 1, . . . , n}, we let

B(v, r) := {v′ ∈ {0, 1}n : ∆(v, v′) ≤ r}

denote the (closed) Hamming ball of radius r around (i.e., centered at) v. If we replace the inequality “≤”
above with a strict inequality “<”, we call this object the open Hamming ball of radius r around v, and
denote it by B−(v, r). Notice that the closed Hamming ball has size

(
n
≤r
)
, whereas the open Hamming ball

has size
(

n
≤r−1

)
. With these definitions in hand, we can now define error-correcting codes (codes, for short).

37

The codes

A code is simply a subset of {0, 1}n such that any pair of points in the subset are far apart.

Definition 2.8 (Code). An (n, k, d) code is a subset Q ⊆ {0, 1}n of size 2k such that the Hamming distance
between any distinct x, y ∈ Q is at least d. We say Q is a linear [n, k, d] code if it is also a subspace of Fn2 .

We say an (n, k, d)-code has dimension k, rate k/n, distance d, and relative distance d/n. Next, a
standard relaxation of (n, k, d) codes are list-decodable codes.

Definition 2.9 (List-decodable code). A subset Q ⊆ {0, 1}n is a (ρ, L)-list-decodable code if every Ham-
ming ball in {0, 1}n of radius at most ρn contains at most L codewords.

A straightforward application of the triangle inequality shows that every (n, k, d) code has the following
list decoding properties:

Fact 2.10. If Q ⊆ {0, 1}n is an (n, k, d) code, then Q is (ρ, L) list decodable for L = 1 and any ρ < d
2n .

Now that we know what codes are, it’s natural to ask whether such objects exist. We answer this, next.

The bounds

We will exploit two different classical bounds from coding theory. First, the following theorem shows that
great (linear) codes exist, but does not give an explicit way to construct them.

Theorem 2.1 (Gilbert-Varshamov bound [Gil52, Var57]). There exists an [n, k, d] code for all n, k, d where

2k ≤ 2n(
n
≤d−1

) .
On the other hand, this next bound shows that great codes cannot exist (for slightly better parameters).

We state a version for list-decodable codes, and provide its simple proof, for completeness.

Theorem 2.2 (Hamming bound [Ham50]). For any (ρ, L)-list decodable code Q ⊆ {0, 1}n of size 2k,

2k ≤ 2nL(
n
≤ρn
)

Proof. Consider the quantity
∑

q∈Q |B(q, ρn)|. Notice that for any fixed v ∈ {0, 1}n, there are at most
L codewords q ∈ Q such that v ∈ B(q, ρn), because otherwise |B(v, ρn) ∩ Q| > L, contradicting the
list-decodability of Q. Thus

|Q| ·
(

n

≤ ρn

)
=
∑
q∈Q
|B(q, ρn)| ≤

∑
v∈{0,1}n

L ≤ 2nL,

and the inequality follows.

This completes our extremely brief discussion on coding theory. For a detailed exposition of this beau-
tiful field, we refer the reader to the excellent textbook of Guruswami, Rudra, and Sudan [GRS22].

38

Part I

Extractors for independent sources

39

Chapter 3

Extractors for adversarial sources

The independent source model is the oldest and most well-studied setting in which to study randomness
extraction. Here, one assumes access to multiple independent weak random sources X1,X2, . . . ,XN over
n bits, each guaranteed to contain some min-entropy k. The origins of this model can be traced back to
the 50s, and after a beautiful line of work spanning several decades, we now have near-optimal explicit
extractors for independent sources.

In practice, however, it is unclear whether the independent source model is a realistic one. In real life,
natural sources of randomness may sometimes produce samples with no entropy at all. It may therefore be
more realistic to consider a model where only K of the independent sources X1, . . . ,XN are guaranteed
to have any min-entropy k, with the location of these good sources being unknown. We call such sources
(N,K, n, k)-adversarial sources.

In this chapter, we launch the first systematic study of randomness extraction from adversarial sources.
Prior to our work, the best low-error extractors for this model required each good source to have min-entropy
k ≥ n0.99, and furthermore required K ≥

√
N of the sources to be good. In our work, we show how to

construct low-error extractors for exponentially less min-entropy k ≥ polylog(n), and furthermore our
extractors require even fewer good sources K ≥ N0.01. In fact, in most settings, our extractors perform
even better than this, and can handle K ≥ polylog(N) good sources or even bad sources that depend on
many of the good sources.

The class of adversarial sources generalizes several well-studied classes of sources, and our extractors
for this new model find applications in cryptography, distributed computing, and pseudorandomness itself.
In order to construct our extractors for adversarial sources, we combine advanced machinery from the theory
of extractors in a novel way, via various sorts of explicit extremal hypergraphs. Our constructions establish
new connections to coding theory, communication complexity, and extremal combinatorics (e.g., cap set
bounds and explicit Ramsey graphs), and may therefore be of independent interest.

The results presented in this chapter are based on the following two joint works:

• [CGGL20] Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, and Xin Li. Extractors for adversarial sources via extremal
hypergraphs. In 52nd Annual Symposium on Theory of Computing (STOC 2020), pages 1184–1197. ACM, 2020

• [CG21] Eshan Chattopadhyay and Jesse Goodman. Improved extractors for small-space sources. In 62nd Annual Sympo-
sium on Foundations of Computer Science (FOCS 2021), pages 610–621. IEEE, 2021

41

3.1 Introduction

The independent source model is the oldest model in all of extractor theory, with origins dating back to the
very paper of von Neumann [vN51] that started the field. In this setting, one assumes access to multiple
independent sources of randomness, each guaranteed to contain some min-entropy. Given such sources, the
goal is to produce a uniformly random string:

Definition 3.1 (Extractor for independent sources [SV86, Vaz87b, CG88]). A function Ext : ({0, 1}n)N →
{0, 1}m is called an extractor for independent sources of min-entropy k with error ε if the following holds.
For any N independent sources X1,X2, . . . ,XN ∼ {0, 1}n, each with min-entropy at least k,

|Ext(X1,X2, . . . ,XN)−Um| ≤ ε.

The motivation behind this model comes from the belief that if we harvest random strings from unrelated
(e.g., geographically isolated) sources, then these strings are likely to be independent. Given an extractor for
independent sources, we can then convert these strings into a stream of uniformly random bits, and unlock
the treasure trove of applications of randomness in computer science (Section 1.1).

Beyond the above classical motivation from extractor theory, extractors for independent sources are
powerful pseudorandom primitives that naturally generalize seeded extractors, which already boast a stun-
ning display of applications in hardness of approximation [Zuc96a, Uma99, MU02, Zuc07] and the con-
struction of error-correcting codes [TZ04, Gur04], pseudorandom generators [NZ96], and expander graphs
[CRVW02] (which have their own suite of applications [HLW06]). But independent source extractors
have also made a name for themselves, uncovering a wide array of “bonus” applications in communica-
tion complexity [Vaz87b], combinatorics [BRSW12], distributed computing [GSV05], and even learning
theory [GRT18]. As always, however, almost all of these applications require the extractor to be explicit.

Extractors for independent sources

After a beautiful line of work spanning four decades, we now have near-optimal explicit extractors for
independent sources. Non-explicitly, it is not hard to show that excellent extractors exist, even for just
N = 2 sources with extremely low min-entropy k ≥ O(log n) and extremely low error ε = 2−Ω(k).
Explicitly (which is crucial for applications), the best extractors known today are as follows.

• For N = 2 sources: There exist explicit (constant-error) extractors for min-entropy k ≥ O(log n).

In the low-error setting, the best explicit extractors still require min-entropy just below k ≥ n/2.

• For N = 3 sources: There exist explicit low-error extractors for min-entropy k ≥ polylog(n).

These intricate constructions are the culmination of dozens of papers published over nearly 40 years.
Below, we give a whirlwind tour of this story.

The early days The first explicit extractor for independent sources was given by Chor and Goldreich
[CG88], who introduced this model1 and showed that inner product (mod 2) extracts from two sources

1The earliest extractors for this setting can actually be traced back to von Neumann [vN51] (and the follow-ups [HS70, Eli72,
Dwa72, BL73, SW84]), but these constructions only worked for identically distributed sources and very large N . Santha and
Vazirani [SV86] showed how to construct low-error extractors for N = ω(logn) arbitrary semi-random sources, a slightly less
general model than min-entropy sources. Vazirani [Vaz87b] greatly improved this result, showing how to extract from just N = 2
semi-random sources with exponentially small error. Chor and Goldreich [CG88] generalized this result, introducing the notion of
min-entropy sources and showing that the function from [Vaz87b] still works.

42

with min-entropy k ≥ 0.501n and error ε = 2−Ω(k). No progress was made for nearly 20 years, until a
breakthrough result of Bourgain [Bou05] exploited recent advances in additive combinatorics to break the
(n/2)-entropy barrier and extract from two sources with min-entropy k ≥ 0.499n and error ε = 2−Ω(k).2

Raz [Raz05] constructed a different two-source extractor, which still required one source with min-entropy
k1 ≥ 0.501n, but allowed the other source to have min-entropy k2 ≥ O(log n), while maintaining low error
ε = 2−Ω(k2). That same year, the entropy requirement for two-source dispersers (extractors with nontrivial
error ε < 1/2) was improved to k ≥ 0.01n [BKS+10]. The following year saw an even more dramatic
improvement, when Barak, Rao, Shaltiel and Wigderson decreased the entropy requirement for two-source
dispersers to k ≥ no(1) [BRSW12]. For the next 10 years, progress on the two-source setting came to a halt.

Near-optimal three-source extractors In an attempt to further decrease the min-entropy requirement,
researchers turned towards using more sources. The first result in this direction was published by Barak,
Impagliazzo, and Wigderson [BIW06],3 who showed how to extract from a constant number of sources
N = O(1) with min-entropy k ≥ 0.01n and error ε = 2−Ω(k). (A simpler construction, which obtains the
same parameters, was given by Bourgain, Glibichuk, Konyagin [BGK06].) The following year, the same
entropy requirement of k ≥ 0.01n was achieved for just N = 3 sources, albeit with worse error ε = 0.01
[BKS+10]. A major improvement was then given by Rao [Rao09a], who extracted from a constant number
of sourcesN = O(1) with entropy k ≥ n0.01. Rao’s extractor has error ε = 1/kΩ(1), which was improved to
ε = 2−k

Ω(1)
in [BRSW12]. Finally, in an exciting line of work [Li11a, Li13b, Li13a, Li15], Li dramatically

improved these parameters, constructing near-optimal extractors for justN = 3 sources: his extractors work
for min-entropy just k ≥ logC n for some constant C, and have exponentially small error ε = 2−k

Ω(1)
.4

Near-optimal two-source extractors In the year following Li’s near-optimal three-source extractors, the
two-source setting saw its first improvement in a decade - and it was groundbreaking. In independent
works at STOC 2016, Cohen constructed a two-source disperser for min-entropy k ≥ logC n [Coh19],
while Chattopadhyay and Zuckerman constructed a two-source extractor for the same min-entropy [CZ19].5

While the error of the Chattopadhyay-Zuckerman extractor is only polynomially small ε = n−Ω(1), their
entropy requirement offered an exponential improvement over the previous best result of Bourgain [Bou05].
Following these breakthrough results, Li [Li16] improved the output length of the extractor, while a flurry
of other work successfully brought the entropy requirement down from k ≥ logC n to k ≥ log1+o(1) n
[CS16a, CL16a, Coh16b, Mek17, BDT19, Coh17, Li17, Li19]. Very recently, a preprint of Li [Li23] finally
achieves the asymptotically optimal entropy requirement of k ≥ O(log n). Notably, however, none of
these constructions achieve low-error: here, the only improvement since Bourgain has been the low-error
two-source extractor of Lewko [Lew19], which requires min-entropy about k ≥ 0.45n.

Needless to say, extractors for independent sources have received an extraordinary amount of attention
over the past 40 years, and the progress has been staggering. While a significant amount of work remains to
be done for the low-error, two-source setting, we now have near-optimal explicit constructions of low-error
three-source extractors and high-error two-source extractors. This begs the question,

What’s next?
2We refer the reader to [Rao07] for an excellent exposition of this result.
3In fact, this was a year before the result of Bourgain [Bou05], and may therefore be considered the catalyst that restarted work

on independent source extraction.
4A later work [BCDT19] gives an alternative construction that achieves these same parameters.
5See [Cha20] for a great overview.

43

Extractors for adversarial sources

While the independent source model has enjoyed a rich history in the theory of randomness extractors, it is
not completely clear how realistic the model really is. In particular, recall that this model assumes access
to several independent sources X1,X2, . . . ,XN , each with its own min-entropy guarantee. However, in
reality, computers rely on sources (such as keystrokes, mouse movements, and processor temperatures) that
can sometimes be completely predictable.

In such situations, some of the sources may contain no entropy at all.

Today’s independent source extractors cannot handle this adversarial situation, and will fail to output
uniformly random bits. Developing a theory of randomness extraction in the presence of sources with
missing entropy would provide a robust generalization of the independent source model, and may eventually
help us build better random number generators for computers. In this chapter, we initiate a systematic study
of this question, via a model we call adversarial sources.

Definition 3.2 (Adversarial source). A source X ∼ ({0, 1}n)N is called an (N,K, n, k)-adversarial source
if it is of the form X = (X1,X2, . . . ,XN), where each Xi is an independent source over n bits, and at least
K of them are good: i.e., there is some set S ⊆ [N] of size |S| ≥ K such that H∞(Xi) ≥ k for all i ∈ S.

In this model, we crucially do not know which of the sources are good. We would like to construct a
single function that extracts from any adversarial source:

Definition 3.3 (Extractor for adversarial sources). A function Ext : ({0, 1}n)N → {0, 1}m is called an
extractor for (N,K, n, k)-adversarial sources with error ε if the following holds. For any N independent
sources X1,X2, . . . ,XN ∼ {0, 1}n, where at least K of them have min-entropy at least k,

|Ext(X1,X2, . . . ,XN)−Um| ≤ ε.

Comparing Definitions 3.1 and 3.3, it can be seen that extractors for adversarial sources are a simple,
robust generalization of extractors for independent sources. As we will see, these new, more general extrac-
tors also unlock new applications in pseudorandomness (Section 3.6), distributed computing (Section 3.7),
and cryptography (Section 3.8). Despite all of this, there has never been a comprehensive study of this set-
ting. However, there do exist explicit constructions of extractors for adversarial sources in the wild - either
implicitly, or under a different name. We outline these, below.

Prior constructions In several works [KM04, KM05, GSV05, LLTT05, CL16b], it has been observed
that a (black-box) two-source extractor can be used to extract from a collection of sources where only two
of them have entropy (with roughly the same parameters). This gives high-error extractors for adversarial
sources with K ≥ 2 good sources of min-entropy k ≥ O(log n), and low-error extractors for adversarial
sources with K ≥ 2 good sources of min-entropy just below k ≥ n/2. In [KRVZ11], the authors observed
that the (white-box) constant-source extractor of [BGK06] can also handle sources with no entropy. This
gives low-error extractors for adversarial sources with K ≥ O(1) good sources with k ≥ 0.01n. However,
to achieve sublinear entropy in the low-error setting, the only known construction [KRVZ11, Theorem 5.6]
requires many more good sources: K ≥ O(

√
N) good sources of min-entropy k ≥ n0.99. To the best of our

knowledge, these are the only known constructions of extractors for adversarial sources.6

6Other known generalizations of two-source extractors (like interleaved-source extractors [RY11, CZ16, CL20] and sumset
extractors [CL16b, CL22]) can, of course, also extract from adversarial sources. However, these settings are even more challenging
than the two-source setting, and cannot be used to improve the parameters above.

44

3.2 Our results

In this chapter, we launch a systematic study of extractors for adversarial sources. As we have seen, these
extractors are more robust versions of classical extractors for independent sources. We focus here on low-
error extractors, motivated by applications in cryptography.7 Our results are as follows.

The main extractor

In our main result, we construct significantly improved low-error extractors for adversarial sources. Pre-
viously, the only known low-error extractor for adversarial sources that could handle sublinear entropy
required K ≥ O(

√
N) good sources of min-entropy k ≥ n0.99 [KRVZ11]. We exponentially improve the

min-entropy requirement to k ≥ polylog(n), and do so using fewer good sources K ≥ N0.01.

Theorem 3.1 (The main extractor). For any fixed δ > 0, there exist constants C, γ > 0 such that the
following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial
sources with K ≥ CN δ good sources of min-entropy k ≥ logC n, which has output length m ≥ kγ and
error ε = 2−k

γ
.

Our construction relies on a novel way of combining new tools from extractor theory and extremal
combinatorics, which are built using fresh connections to communication complexity and coding theory. As
an application of our extractor, we also obtain improved extractors for more traditional settings (Section 3.6).
Next, we show that in most regimes, we can actually improve the parameters of Theorem 3.1 even further.

Optimized extractors for a few long sources

In every adversarial source, there are N sources of length n. Depending on the relationship between these
parameters, it may be easier or harder to extract. In our main result (Theorem 3.1), we show how to extract
no matter how these parameters are related. Next, we show that in the setting of N ≪ n (i.e., when
there are a few long sources), we can obtain a significantly better result. That is, we obtain an exponential
improvement on the number of good sources required, from K ≥ N0.01 to K ≥ polylog(N).

Theorem 3.2 (A better extractor, in the few-long-sources setting). There exist universal constants C, γ >
0 such that the following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for
(N,K, n, k)-adversarial sources with K ≥ logC N good sources of min-entropy k ≥ logC n, which has
output length m ≥ kγ and error ε = 2−k

γ
, provided that we also have k ≥ NC .

As it turns out, we will show later on that we can get a similar exponential improvement in the com-
plementary many-short-sources setting.8 However, we note that the few-long-sources setting tackled by
Theorem 3.2 is significantly more challenging (and more relevant to applications). To construct these ex-
tractors, we combine tools from extractor theory and extremal combinatorics in a similar way as in our
proof of Theorem 3.1, except the tools are older and the analysis is more involved. In fact, by extending this
analysis, we actually show that we can handle adversarial sources where the bad sources are not only devoid
of min-entropy, but actually correlated with the good sources! We call such sources adversarial sources of
locality d, where d indicates the number of good sources that each bad source may depend on.9 We prove
the following.

7It is known that basic cryptographic tasks (such as bit commitment, encryption, and secret sharing) require access to high-
quality randomness [DOPS04]. Low-error extractors are crucial for such applications.

8There is a slight gap between these two settings, which is why these two results don’t supersede Theorem 3.1.
9Adversarial sources studied thus far correspond to adversarial sources of locality 0. See Definition 3.9.

45

Theorem 3.3 (An extractor for high locality, in the few-long-sources setting). There exist universal con-
stants C, γ > 0 such that the following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m
for (N,K, n, k)-adversarial sources of locality d ≤ Kγ with K ≥ N1−γ good sources of min-entropy
k ≥ logC n, which has output length m ≥ kγ and error ε = 2−k

γ
, provided that we also have k ≥ NC .

In particular, at the cost of increasing the number of good sources back up to K ≥ N0.99, we can handle
bad sources that depend on polynomially many good sources d ≤ K0.01, while still allowing the good
sources to have min-entropy just k ≥ polylog(n). To the best of our knowledge, this is the first explicit
construction of an extractor for adversarial sources that can handle any positive locality.10

Optimized extractors for many short sources

As promised, we can also get similar significant improvements to Theorem 3.1 in the many-short-sources
setting N ≫ n as in the few-long-sources setting (discussed above). In particular, we again obtain an
exponential improvement on the number of good sources required, from K ≥ N0.01 to K ≥ polylog(N).

Theorem 3.4 (A better extractor, in the many-short-sources setting). There exist universal constants C, γ >
0 such that the following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for
(N,K, n, k)-adversarial sources with K ≥ logC N good sources of min-entropy k ≥ 1, which has out-
put length m ≥ Kγ and error ε = 2−K

γ
, provided that we also have K ≥ nC .

Comparing the improvements obtained above with the improvements gained in the few-long-sources
setting (Theorem 3.2), notice that we now only require each source to have one bit of min-entropy! The
proof of Theorem 3.4 is also much easier than that of Theorem 3.2, and involves one simple new trick: we
show that any source with one bit of min-entropy is a convex combination of affine sources. This allows us
to prove that existing affine extractors already extract from the many-short-sources setting with the param-
eters claimed above. In fact, we slightly extend the analysis, and show that these extractors even work for
adversarial sources of high locality. We prove the following.

Theorem 3.5 (An extractor for high locality, in the many-short-sources setting). There exist universal con-
stants C, γ > 0 such that the following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m
for (N,K, n, k)-adversarial sources of locality d ≤ Kγ with K ≥ N1−γ good sources of min-entropy
k ≥ 1, which has output length m ≥ Kγ and error ε = 2−K

γ
, provided that we also have K ≥ nC .

Comparing the improvements obtained above with the few-long-sources setting (Theorem 3.3), note
that we again can handle polynomial locality in the many-short-sources, with the additional bonus of just
requiring one bit of min-entropy in each source. This completes the overview of our results.

Organization

We start with our main extractor (Theorem 3.1) in Section 3.3, gradually building up intuition in a step-by-
step fashion before ultimately providing its construction. Next, we construct our optimized extractors for
the few-long-sources setting (Theorems 3.2 and 3.3) in Section 3.4, and our optimized extractors for the

10In an independent work [AOR+20], Aggarwal, Obremski, Ribeiro, Siniscalchi, and Visconti study a model similar to ours.
However, in their model, called SHELA sources, each bad source can depend on every good source preceding it. They show that
extraction is impossible here, and focus instead on constructing weaker objects known as somewhere extractors. In a concurrent
work [BGM22], Ball, Goldreich, and Malkin study a somewhat related model, called sources of bounded coordination. However,
they prove that their model behaves similarly to the independent source model (with entropy guarantees), which is not true for ours.

46

many-short-sources setting (Theorems 3.4 and 3.5) in Section 3.5. After, we discuss some bonus applica-
tions of our new extractors in pseudorandomness, distributed computing, and cryptography (in Section 3.6,
Section 3.7, and Section 3.8, respectively). Finally, we conclude with some open problems in Section 3.9.

3.3 The main extractor

We are now ready to proceed with the technical portion of the chapter. In this section, we focus on con-
structing our main extractor, Theorem 3.1. Instead of diving straight in, let’s begin with what is known.

3.3.1 A known construction: two-source extractors everywhere

Given standard equipment from extractor theory, it is not too difficult to extract from adversarial sources
with just 2 good sources, provided that they have enough min-entropy. Indeed, the following result has been
independently observed several times a couple times over the past few years.

Theorem 3.6 (The known extractor for adversarial sources). For any fixed δ > 0, there exists a constant
γ > 0 such that the following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for
(N,K, n, k)-adversarial sources with K ≥ 2 good sources of min-entropy k ≥ (1/2 + δ) · n, which has
output length m ≥ γk and error ε = 2−γk.

In order to prove this result, one natural approach is to take an off-the-shelf two-source extractor, and
simply call it on every pair of sources in the adversarial source X. Indeed, upon doing so, as long as there are
just 2 good sources in X, we are guaranteed that one of these calls will output uniform bits. Furthermore,
by the min-entropy chain rule (Lemma 2.1), we can roughly assume that these outputs are independent,
allowing us to XOR them together to propagate the output of the good call to the overall output of the
extractor. More formally, one can prove the following.

Lemma 3.1 (Extractor for adversarial sources via two-source extractors over all pairs). Let 2Ext : {0, 1}n×
{0, 1}n → {0, 1}m be a two-source extractor for min-entropy k with error ε. Then the function Ext :
({0, 1}n)N → {0, 1}m defined as

Ext(x1, . . . , xN) :=
⊕

1≤i<j≤N
2Ext(xi, xj)

is an extractor for (N, 2, n, k +m+ log(1/ε))-adversarial sources with error 3ε.

Proof. Let X ∼ ({0, 1}n)N be an (N, 2, n, k′)-adversarial source, for some k′ we will set later. Since the
extractor Ext treats every pair of sources the same, we may assume (without loss of generality) that X1,X2

are the good sources in X. In other words, we may assume that X1,X2 each have min-entropy at least k′.
We now use the data-processing inequality (Fact 2.3) to fix all other sources. More formally, we have

|Ext(X)−Um| ≤ |Ext(X) ◦X3 ◦ · · · ◦XN −Um ◦X3 ◦ · · · ◦XN |
= Ex3∼X3,...,xN∼XN

[|Ext(X1,X2, x3, . . . , xN)−Um|]
≤ |Ext(X1,X2, x

∗
3, . . . , x

∗
N)−Um|

47

for some worst-case x∗3, . . . , x
∗
N ∈ {0, 1}n. Consider now the random variables

Y1 :=
⊕

3≤j≤N
2Ext(X1, x

∗
j)

Y2 :=
⊕

3≤j≤N
2Ext(X2, x

∗
j),

z :=
⊕

3≤i<j≤N
2Ext(x∗i , x

∗
j),

Now, notice that we may write

Ext(X1,X2, x
∗
3, . . . , x

∗
N) = 2Ext(X1,X2)⊕Y1 ⊕Y2 ⊕ z,

where Y1 ∼ {0, 1}m is a deterministic function of X1, and Y2 ∼ {0, 1}m is a deterministic function of X2,
and z is fixed. Thus if we condition on Y1,Y2 being equal to any values y1, y2, it holds that X1,X2 remain
independent. By the min-entropy chain rule (Lemma 2.1), we know that with probability≥ 1−ε over fixing
Y1 to some y1, it holds that (X1 | Y1 = y) has min-entropy at least k′ −m − log(1/ε). The same is true
for X2 and Y2. Thus, there exist some y∗1, y

∗
2 such that X∗1 := (X1 | Y1 = y∗1) and X∗2 := (X2 | Y2 = y∗2)

are independent and each have min-entropy at least k′ −m − log(1/ε), and such that we can continue our
inequality (from above) as follows:

|Ext(X1,X2, x
∗
3, . . . , x

∗
N)−Um| = |2Ext(X1,X2)⊕Y1 ⊕Y2 ⊕ z −Um|

≤ |2Ext(X∗1,X∗2)⊕ y∗1 ⊕ y∗2 ⊕ z −Um|+ 2ε

= |2Ext(X∗1,X∗2)−Um|+ 2ε,

where the last equality follows from the fact that shifting a random variable does not change its statistical
distance from uniform. Finally, as long as k′ −m− log(1/ε) ≥ k, can bound the above by

≤ ε+ 2ε = 3ε.

Thus, the adversarial source extractor Ext has error 3ε, as long as k′ ≥ k +m+ log(1/ε), as desired.

Now, to instantiate the above framework, we can just take a standard low-error two-source extractor, and
plug it in. Our two-source extractor of choice will be the following.

Lemma 3.2 (Two-source extractor [Vaz87b, CG88]). For every fixed δ > 0, there exists a constant γ > 0
such that the following holds. There exists an explicit two-source extractor 2Ext : {0, 1}n × {0, 1}n →
{0, 1}m for min-entropy k ≥ (1/2 + δ) · n, which has output length m ≥ γk and error ε = 2−γk.

Now, let’s plug it into the above framework.

Proof of Theorem 3.6. Let X ∼ ({0, 1}n)N be an (N,K ≥ 2, n, k)-adversarial source. By plugging in
the explicit two-source extractor from Lemma 3.2 into our compiler (Lemma 3.1), we know that for every
fixed δ′ > 0 there is a constant δ′ > γ′ > 0 such that the following holds.11 We can explicitly extract m ≥
γ′ ·(1/2+δ′) ·n bits from X with error 3ε = 3 ·2−γ′·(1/2+δ′)·n, as long as k ≥ (1/2+δ′) ·n+m+log(1/ε),
or rather k ≥ (1/2 + δ′) · (1 + 2δ′) · n. The result follows by picking δ′ based on δ, and γ based on γ′.

11Note that we can enforce an arbitrary upper bound on γ′ because this can only weaken the claim made in Lemma 3.2.

48

The above construction of adversarial source extractors was simple, quick, and worked for just K = 2
good sources. However, it left something to be desired. In particular, the min-entropy requirement of the
good sources is huge, and we would like to try to decrease it further. In order to do so, we will need at least
one more source of randomness, unless we want to immediately solve one of the biggest open questions in
extractor theory (improved low-error extractors for two independent sources). Now, the question is, is this
enough to get better extractors?

One might hope that the answer is yes. Indeed, while there are no known low-error two-source extrac-
tors that significantly outperform the one above, there are, in fact, three-source extractors of this type. In
particular, in a seminal paper of Li [Li15], low-error three-source extractors were constructed for just poly-
logarithmic min-entropy. In order to exploit these objects to obtain better adversarial source extractors, one
might try to just run the above argument once again. In particular, perhaps we can just call Li’s three-source
extractor on every triple, XOR the results, and hope for the best. Now, if there are at least 3 good sources
with polylogarithmic min-entropy, we are certainly guaranteed that some three-source extractor call will be
activated, i.e., output uniform bits. However, upon some reflection, there is no way to guarantee that the
XOR call won’t completely destroy these uniform bits. Indeed, since some extractor calls may now share
up to two sources with the activated call, we have no way to fix these other calls without compromising the
independence of the sources feeding the activated call (and thereby compromising its uniform output).

3.3.2 A warm-up construction: three-source extractors and cap set bounds

In this section, we will provide a solution to the above conundrum, and prove the following result.

Theorem 3.7 (The warm-up extractor for adversarial sources). There exist constants C, γ > 0 such that the
following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial
sources with K ≥ CN0.9228 good sources of min-entropy k ≥ logC n, which has output length m ≥ kγ and
error ε = 2−k

γ
.

In order to prove this result, notice that we ran into a problem above due to the fact that there exist
extractor calls that share two of their input sources. Thus, there is a clear way to prevent this from happening:
simply make sure that your adversarial source extractor never makes such overlapping calls! In particular,
instead of calling Li’s three-source extractor over every triple of sources, it makes more sense to call it
over a collection of triples such that each pair of triples share at most one source. As it turns out, this is a
well-studied structure in combinatorics.

Definition 3.4 (Partial Steiner triple system (STS)). A partial Steiner triple system is a 3-uniform hypergraph
G = (V, E) where any two edges share at most one vertex.

Now, given this structure, we have all-but-defined our new candidate extractor for adversarial sources:
namely, just overlay an STS over the sources making up the adversarial source, call a three-source extractor
call on each hyperedge of the STS, and XOR the results. Thinking about this a little, it is not too hard to
show that the output of an activated three-source extractor call will look roughly independent of the rest.
However, another problem arises: we are no longer guaranteed to have an activated call at all! Indeed, the
empty hypergraph is an STS, yet clearly the corresponding extractor cannot even extract when there are
K ≥ N good sources. Indeed, what we want is to make sure that for the smallest possible number of good
sources K, we are always guaranteed to cover a hyperedge (no matter where the good sources are placed).
In other words, we want to make sure that the STS has a small independence number, defined to be the size
of the largest set of vertices that fail to cover any hyperedge. With all of this in mind, we are just about ready
to define our new framework for extracting. But one quick last note: since hyperedges are not inherently

49

ordered, while the inputs to a function are, we need some way to order the hyperedges. Towards this end,
we will simply define partial Steiner triple systems over a vertex sets identified with [N], and always assume
that the edges in E are ordered in increasing order of vertex label. At last, let us construct and prove the
correctness of our new extractor.

Lemma 3.3 (Extractor for adversarial sources via three-source extractors over a Steiner triple system).
Let 3Ext : ({0, 1}n)3 → {0, 1}m be a three-source extractor for min-entropy k with error ε, and let
G = ([N], E) be a partial Steiner triple system with independence number α. Then the function Ext :
({0, 1}n)N → {0, 1}m defined as

Ext(x1, . . . , xN) :=
⊕

(i1,i2,i3)∈E

3Ext(xi1 , xi2 , xi3)

is an extractor for (N,α+ 1, n, k +m+ log(1/ε))-adversarial sources with error 4ε.

Proof. Let X ∼ ({0, 1}n)N be an (N,K = α + 1, n, k′)-adversarial source, for some k′ we will set later,
and observe that sinceK > α, there must be some edge F := (v1, v2, v3) ∈ E that is completely covered by
good sources. Now, for each (h, i, j) ∈ E , define the random variable Y(h,i,j) := 3Ext(Xh,Xi,Xj), and
note that Ext(X) =

⊕
(h,i,j)∈E Y(h,i,j). Observe that since G is an STS, we can partition E \ (v1, v2, v3)

into E1, E2, E3, E4 such that the triples in E4 have an empty intersection with F , while the triples in Eℓ, for
ℓ ∈ [3], intersect with F at exactly vℓ. Thus, if we define Zℓ :=

⊕
(h,i,j)∈Eℓ Y(h,i,j), for each ℓ ∈ [4], then:

Ext(X) = Y(v1,v2,v3) ⊕ Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4.

Now, fix all random variables Xi such that i /∈ {v1, v2, v3}. Notice that this fixes Z4, whereas each Zℓ,
for ℓ ∈ [3], becomes a deterministic function of Xℓ. Next, fix Z1. This only affects Xv1 , and by the min-
entropy chain rule (Lemma 2.1), it will still have at least k′−m− log(1/ε) bits of min-entropy, except with
probability at most ε. Next, do the same for Z2 and Z3. By a union bound, each of Xv1 ,Xv2 ,Xv3 will still
have min-entropy k′ −m− log(1/ε), except with probability at most 3ε. Furthermore, these three random
variables are still independent, because we were just fixing deterministic functions that act on just one of
them each. After all these fixings, we now have

Ext(X) = Y(v1,v2,v3) ⊕ b = 3Ext(Xv1 ,Xv2 ,Xv3)⊕ b

for some constant b ∈ {0, 1}n. Thus, as long as k′ − m − log(1/ε) ≥ k, this output will be ε-close to
uniform. Adding in the error from our fixings, we see that the original output of Ext(X) is (ε+3ε)-close to
uniform, provided that k′ ≥ k +m+ log(1/ε). This completes the proof.

Now, let us prepare to instantiate the above framework. First, we’ll need a formal statement of Li’s
three-source extractor.

Lemma 3.4 (Three-source extractor [Li15]). There exist constants C, γ > 0 such that the following holds.
There exists an explicit three-source extractor 3Ext : ({0, 1}n)3 → {0, 1}m for min-entropy k ≥ logC n,
which has output length m ≥ γk and ε = 2−k

γ
.

Next, we’ll need an explicit construction of an STS with no big independence set. But wait, where can
we even find an object? In the following lemma, we show that they can be easily constructed by exploiting
the recent breakthrough on cap set bounds.

50

Lemma 3.5 (Partial Steiner triple system). There exists a constant C > 0 such that there exists an explicit
partial Steiner triple system G = ([N], E) with independence number α(G) ≤ CN0.9228.

Proof. For now, assume that N is a power of 3. Define a hypergraph G = ([N], E) that identifies [N] with
the points in Flog3N

3 and E with the lines in Flog3N
3 . G is clearly a partial Steiner triple system, because no

two lines intersect at more than one point. Furthermore, notice that an independent set S in G is exactly a
set of points in FlogN

3 such that no three are in a line. Such a set is called a cap set, and it is known that a
cap set in FlogN

3 has size at most 2.756log3N ≤ N0.9228 [CLP17, EG17]. It is straightforward to extend this
construction to when N is not a power of three, by writing N in base-3, doing the above construction for
every component of its base-3 representation, and adding the max cap set sizes from each component.

Now, given these two ingredients and our new framework for extracting, Theorem 3.7 is immediate.

Proof of Theorem 3.7. Simply instantiate Lemma 3.3 with Lemmas 3.4 and 3.5.

Now that we have successfully constructed low-error adversarial source extractors for polylogarithmic
min-entropy, where should we look next? Well, one issue with the above construction is that it requires a
lot of the sources to be good, namely, K ≥ N0.9228. This seems like quite a steep price to pay in order
to reduce the min-entropy of each good source. Is there any way to reduce the required number of good
sources, while still extracting from k = polylog(n) min-entropy? One natural approach is to simply try to
construct better STS’s (i.e., with smaller independence number). However, it is well-known that every STS
over N vertices has independence number at least Ω(

√
N logN) [RŠ94]. Thus, if we want to extract from

K ≪
√
N good sources, we need a new idea. One possibility is to think about set systems with bigger

hyperedges, that still have pairwise edge intersections of at most 1. However, this can only make matters
worse, as the independent set size can only increase [RŠ94]. Indeed, we somehow need to allow for bigger
intersections if we hope to extract from fewer good sources. But wasn’t this the idea that got us into trouble
in the first place?

3.3.3 The general construction: leakage-resilient extractors and extremal designs

We now show how to resolve the issues above, and extract from just K ≥ N0.01 good sources.

Theorem 3.8 (The main extractor for adversarial sources - Theorem 3.1, restated). For any fixed δ > 0, there
exist constantsC, γ > 0 such that the following holds. There exists an explicit extractor Ext : ({0, 1}n)N →
{0, 1}m for (N,K, n, k)-adversarial sources with K ≥ CN δ good sources of min-entropy k ≥ logC n,
which has output length m ≥ kγ and error ε = 2−k

γ
.

In order to construct good extractors for adversarial sources, the key idea is to strike a perfect balance
between the structure offered by the underlying hypergraph, and the robustness offered by the extractor
being called as a subroutine. Indeed, as we have seen above, if the hypergraph has big intersections, then we
need our three-source extractor to be extremely robust (in the sense that its output should look uniform even
conditioned on other three-source extractors acting on up to two of the same inputs - and indeed, we don’t
know of such objects). On the other hand, if the hypergraph has small intersections, then we need many
good sources in order to active a hyperedge. So, what should we do?

The key idea is to use an object constructed in a different part of this thesis (Chapter 4), which was
originally motivated by applications in cryptography. I’m talking about a leakage-resilient extractor (LRE),
which is a robust version of a classical independent source extractor, in the sense that its output is guaranteed
to look uniform and stay uniform, even conditioned on the output of several other leakage functions acting

51

on the same set of sources. Indeed, their definition, presented below, is eerily similar to the exact property
we requested above.12

Definition 3.5 (Leakage-resilient extractor). A function Ext : ({0, 1}n)r → {0, 1}m is called an (r, s)-
leakage-resilient extractor for independent sources of min-entropy k with error ε if the following holds.
For any r independent sources X1,X2, . . . ,Xr ∼ {0, 1}n, each with min-entropy at least k, and for any
collection of functions {LeakA : ({0, 1}n)s−1 → {0, 1}m}A∈A where A :=

(
[r]
s−1
)
, it holds that

|LRE(X) ◦ (LeakA(XA))A∈A −Um ◦ (LeakA(XA))A∈A| ≤ ε.

Informally, an (r, s)-LRE is just an extractor for r independent sources, whose output remains uniform
even conditioned on leaks that act on all possible (s− 1)-tuples of the inputs. Whether we realize it or not,
we have actually already referred to LREs implicitly many times throughout this section. In particular, in
our constructions that worked we were using the fact that every three-source extractor is automatically an
(3, 2)-LRE, via the min-entropy chain rule. And in our constructions that failed, they failed because it is not
guaranteed that every three-source extractor is a (3, 3)-LRE. Furthermore, it is not clear at all how hard such
objects are to construct.

In Chapter 4, we do not give full-blown (3, 3)-LREs. However we do construct low-error LREs that
vary greatly in terms of how many sources they use, and the intersections they can handle. And furthermore,
they can even extract from polylogarithmic min-entropy. Thus, the key idea behind our main extractor is to
figure out how to exploit these, by constructing combinatorial objects that are more general than STS’s. As
it turns out, the exact objects that we want are well-known, and referred to as combinatorial designs.

Definition 3.6 (Design). An (N, r, s)-design is an r-uniform hypergraph G = (V, E) over N vertices where
any two edges intersect at less than s vertices.

Since our LREs will work for polylogarithmic min-entropy, the hope is that these more general designs
will offer a way to achieve a smaller independence number, and thus extract from a smaller number K of
good sources that still have just polylogarithmic min-entropy. As suggested by the matching parameters, the
idea will be to call an (r, s)-LRE over the hyperedges of an (N, r, s)-design. And almost by definition, we
immediately get the following framework.

Lemma 3.6 (Extractor for adversarial sources via leakage-resilient extractors over a combinatorial design).
Let LRE : ({0, 1}n)r → {0, 1}m be an (r, s)-leakage-resilient extractor for min-entropy k with error ε, and
letG = ([N], E) be an (N, r, s)-design with independence number α. Then the function Ext : ({0, 1}n)N →
{0, 1}m defined as

Ext(x1, . . . , xN) :=
⊕

(i1,...,ir)∈E

LRE(xi1 , . . . , xir)

is an extractor for (N,α+ 1, n, k)-adversarial sources with error ε.

Proof. Let X be an (N,K = α + 1, n, k)-adversarial source, and observe that since K > α, there must
be some edge F := (v1, . . . , vr) ∈ E that is completely covered by good sources. Now, since G is an
(N, r, s)-design, it follows that F (which has size r) shares at most s−1 vertices with any other edge. Thus,
we may partition E \ {F} into

(
r
s−1
)

sets, depending on the intersection behavior of each edge with F . In
particular, for each S ∈

(
F
s−1
)
, we define

WS := {e ∈ E : e ∩ F ⊆ S}.
12The definition presented here is actually an LRE against so-called non-adaptive bounded collusion protocols. We construct

even stronger LREs in Chapter 4.

52

If any e ∈ E ends up in more than one WS , we simply remove it from all but one of these sets, to form a
true partition. Now, for each S ∈

(
F
s−1
)
, we define the function LeakS : ({0, 1}n)N → {0, 1}m as

LeakS(x1, . . . , xN) :=
⊕

(i1,...,ir)∈WS

LRE(xi1 , . . . , xir),

so that we may write

Ext(X) = LRE(Xv1 , . . . ,Xvr)⊕
⊕

S∈(F
s−1)

LeakS(X1, . . . ,XN).

By combining this expression with (an appropriate function plugged into) the data-processing inequality
(Fact 2.3), we know that

|Ext(X)−Um| ≤ |LRE(Xv1 , . . . ,Xvr) ◦ (LeakS(X1, . . . ,XN))S∈(F
s−1)

−Um ◦ (LeakS(X1, . . . ,XN))S∈(F
s−1)
|.

But notice now that if fix all Xi such that i /∈ {v1, . . . , vr}, then we have not affected Xv1 , . . . ,Xvr at all
(due to all the sources being independent), while the leaks restricted under these fixings obtain the same
structure as the leaks in Definition 3.5. Thus, since the good sources started out with min-entropy k (and
still have min-entropy k after the fixings), the leakage-resilience of LRE immediately implies that the above
is upper bounded by ε. This completes the proof.

Now, before we instantiate this framework, we must figure out how to achieve the smallest possible
independence number. Well, returning to the paper that originally yielded a

√
N barrier for STSs [RŠ94], the

authors show that for constant r and s, there exist (N, r, s)-designs G with independence number α(G) ≤
O(N

r−s
r−1 (log n)

1
r−1). In other words, this decreases as s gets closer to r, and thus these are the parameters

we should shoot for. Towards this end, we show in Chapter 4 how to construct explicit (r, s)-LREs for
almost the most extreme setting of these parameters, in particular, when s = r− 1. We prove the following.

Lemma 3.7 (Leakage-resilient extractor - Theorem 4.2, specialization). For every constant r ≥ 3 there
exist constants C, γ > 0 such that the following holds. There exists an explicit (r, r − 1)-leakage-resilient
extractor LRE : ({0, 1}n)r → {0, 1}m for min-entropy k ≥ logC n, which has output length m ≥ kγ and
error ε = 2−k

γ
.

We are almost ready to instantiate our main framework, but one clear problem remains - where can
we find our explicit designs? Indeed, even though it was shown in [RŠ94] that (N, r, r − 1)-designs exist
with very small independence number exist, they did not provide a way to efficiently (and deterministically)
construct them. However, in Chapter 5, we provide an efficient algorithm to do exactly that, explicitly
constructing designs that match the probabilistic constructions up to a square. In particular, setting s = r−1
in our construction yields the following result.

Lemma 3.8 (Design - Theorem 5.1, specialization). For every even constant r ≥ 3 there exists a constant
C > 0 such that the following holds. There exists an explicit (N, r, r − 1)-design G = ([N], E) with
independence number α(G) ≤ Cn2/r.

Now, with these two results in hand, the proof of our main extractor follows immediately.

Proof of Theorem 3.8. Instantiate Lemma 3.6 with Lemmas 3.7 and 3.8.

53

3.4 Optimized extractors for a few long sources

Now that we have completed the construction of our main extractor for adversarial sources, we turn to show
that for the setting of a few long sources, we can achieve significantly improved parameters.

A construction of three-source correlation breakers

The key idea is to switch back to the setting of three-source extractors, and hope that we can somehow
make them robust enough to deal with pairwise intersections of size 2. In an ideal world, we would like a
three-source extractor that is, in some sense, self-resilient: namely, we want its output to look uniform on
input sources X1,X2,X3, even if it is called several more times on any (strict) subsets of the same input
(combined with other random variables or fixed strings). While such an object remains out of reach, we try
to construct the next best thing. In particular, while we won’t be able to ensure resilience against all possible
subsets of size 2, we will be able to do so against most. To make things more formal, we will use the notion
of correlation breakers.

In more detail, we must start by defining valid orderings and valid tampering functions. Towards this
end, we say that an ordering σ : [3] → [3] is valid if the sequence (σ(1), σ(2), σ(3)) does not contain both
1 or 2; or if it does, they must both appear in the first two positions. In symbols, we require that

{1, 2} ̸⊆ {σ(1), σ(2), σ(3)} or (σ(1), σ(2), σ(3)) ∈ {(1, 2, 3), (2, 1, 3)}.13

We note that the word ordering here is a bit of a misnomer, as the image of σ is allowed to have repeated
elements. Next, we say that f : ({0, 1}n)3 → ({0, 1}n)3 is a valid tampering function if there exist some
f1, f2, f3 : {0, 1}n × {0, 1}n and valid ordering σ : [3]→ [3] such that

f(x1, x2, x3) = (f1(xσ(1)), f2(xσ(2)), f3(xσ(3)))

Given these definitions, we are now ready to define our correlation breaker.

Definition 3.7 (Three-source correlation breaker). A function 3CB : ({0, 1}n)3 × {0, 1}a → {0, 1}m is
called a three-source correlation breaker for min-entropy k, advice length a, tampering degree t, and error
ε if the following holds. For any three independent sources X1,X2,X3 ∼ {0, 1}n, each with min-entropy
at least k, any t valid tampering functions f1, . . . , ft : ({0, 1}n)3 → ({0, 1}n)3, and any pieces of “advice”
α0, α1, . . . , αt ∈ {0, 1}a with α0 distinct from the rest,

|3CB(X1,X2,X3, α0) ◦ 3CB(f1(X1,X2,X3), α1) ◦ · · · ◦ 3CB(ft(X1,X2,X3), αt)

−Um ◦ 3CB(f1(X1,X2,X3), α1) ◦ · · · ◦ 3CB(ft(X1,X2,X3), αt)| ≤ ε.

Next, we spend just a moment constructing these objects, as they appear in the remaining constructions.

Lemma 3.9 (Three-source correlation breaker). There exist constants C, γ > 0 such that the following
holds. There exist an explicit three-source correlation breaker 3CB : ({0, 1}n)3 × {0, 1}a → {0, 1}m for
min-entropy k ≥ logC n, tampering degree t ≥ kγ , and advice length a = log t, which has output length
m ≥ kγ and error ε = 2−k

γ
.

In order to construct our correlation breaker, we combine two classic pseudorandom objects: a two-
source non-malleable extractor, and a two-source condenser. We start with the latter, which will allow our
correlation breaker to work for very low min-entropy.

13We encourage the reader to not get caught up in this definition: it is just reverse engineered so our fixings ultimately work out.

54

Lemma 3.10 (Two-source condenser [BCDT19]). For any constant β1 > 0 there exist constants C1, γ1 > 0
such that the following holds. There exists an explicit function 2Cond : {0, 1}n1×{0, 1}n1 → {0, 1}m1 such
that for any two independent sources X1,X2 ∼ {0, 1}n1 , each with min-entropy at least k1 ≥ logC1 n1,

Pr
x2∼X2

[H∞(2Cond(X1, x2)) ≥ m1 −mβ1
1] ≥ 1− ε1,

where m1 ≥ kγ1 and ε1 = 2−k
γ/2
1 .

Next, we turn towards the two-source non-malleable extractor that will be baked into our correlation
breaker. It will be responsible for equipping our correlation breaker with its robustness. This non-malleable
extractor acts as a two-source extractor that is leakage-resilient against itself.

Lemma 3.11 (Two-source non-malleable extractor [CGL20]). There exists a constant γ2 > 0 such that the
following holds. There exists an explicit function 2nmExt : {0, 1}n2 × {0, 1}n2 → {0, 1}m2 such that for
any two sources X1,X2 ∼ {0, 1}n2 , each with min-entropy at least k2 ≥ n2−nγ22 , the following holds. For
any “tampering degree” t2 ≤ nγ22 , any functions f1, . . . , ft, g1, . . . , gt : {0, 1}n2 → {0, 1}n2 with no fixed
points, and any σ1, . . . , σt : [2]→ [2],

|2nmExt(X1,X2) ◦ 2nmExt(f1(Xσ1(1)), g1(Xσ1(2))) ◦ · · · ◦ 2nmExt(ft(Xσt(1)), gt(Xσt(2)))

−Um ◦ 2nmExt(f1(Xσ1(1)), g1(Xσ1(2))) ◦ · · · ◦ 2nmExt(ft(Xσt(1)), gt(Xσt(2)))| ≤ ε2,

where m2 ≥ kγ22 and ε2 = 2−k
γ2
2 .

Given the above two ingredients, we can now turn to construct our three-source correlation breaker,
which simply dedicates one of its input sources to condensing the other two, which are then passed into a
two-source nonmalleable extractor call.

Proof of Lemma 3.9. Let 2Cond : {0, 1}n1 × {0, 1}n1 → {0, 1}m1 be the function from Lemma 3.10 for
min-entropy k1 with associated parameters β1, C1, γ1, ε1 as provided in the lemma statement. Then, let
2nmExt : {0, 1}n2 × {0, 1}n2 → {0, 1}m2 be the function from Lemma 3.11 for min-entropy k2 with
its associated parameters γ2, t2, ε2. Let n1 := n, n2 := m1 + a,m2 := m, and k1 := k. Now, define
3CB : ({0, 1}n)3 × {0, 1}a → {0, 1}m as

CB(x1, x2, x3, α) := 2nmExt((α, 2Cond(x1, x3)), (α, 2Cond(x2, x3))).

Consider now any three independent sources X1,X2,X3 ∼ {0, 1}n with min-entropy at least k, any t valid
tampering functions f1, . . . , ft, and any pieces of advice α0, α1, . . . , αt ∈ {0, 1}a with α0 distinct from the
rest. We want to show

|3CB(X1,X2,X3, α0) ◦ 3CB(f1(X1,X2,X3), α1) ◦ · · · ◦ 3CB(ft(X1,X2,X3), αt)

−Um ◦ 3CB(f1(X1,X2,X3), α1) ◦ · · · ◦ 3CB(ft(X1,X2,X3), αt)| ≤ ε.

If k ≥ logC1 n, then by the properties of 2Cond (and a union bound) we get that

|3CB(X1,X2,X3, α0) ◦ 3CB(f1(X1,X2,X3), α1) ◦ · · · ◦ 3CB(ft(X1,X2,X3), αt)

−Um ◦ 3CB(f1(X1,X2,X3), α1) ◦ · · · ◦ 3CB(ft(X1,X2,X3), αt)|
≤ |3CB(X1,X2, x3, α0) ◦ 3CB(f1(X1,X2, x3), α1) ◦ · · · ◦ 3CB(ft(X1,X2, x3), αt)

−Um ◦ 3CB(f1(X1,X2, x3), α1) ◦ · · · ◦ 3CB(ft(X1,X2, x3), αt)|+ 2ε1,

55

where 2Cond(X1, x3) and 2Cond(X2, x3) both have min-entropy at least m1 − mβ1
1 , and are of course

independent. Towards this end, define Y1 := 2Cond(X1, x3) and Y2 := 2Cond(X2, x3) so that we may
write the above expression as

≤ |2nmExt((α,Y1), (α,Y2)) ◦ 3CB(f1(X1,X2, x3), α1) ◦ · · · ◦ 3CB(ft(X1,X2, x3), αt)

−Um ◦ 3CB(f1(X1,X2, x3), α1) ◦ · · · ◦ 3CB(ft(X1,X2, x3), αt)|+ 2ε1.

It is now straightforward to verify that since each fi is a valid tampering function, it cannot produce outputs
X′1,X

′
2 that depend, respectively, on X1,X2 and end up in the 2Cond call. Thus, once we unwrap the

calls to 3CB, even on the tampered inputs fi(X1,X2, x3), the output of each 2Cond call will depend on
exactly one of X1,X2. In other words, there exist some σ1, . . . , σt : [2] → [2] and deterministic functions
g1, . . . , gt, h1, . . . , ht : {0, 1}n → {0, 1}m1 such that each occurrence of 3CB(fi(X1,X2, x3), αi) in the
expression above can be replaced with 2nmExt((αi, gi(Xσi(1))), (αi, hi(Xσi(2)))). Moreover, if X1 con-
tains any randomness that Y1 does not, we can fix it, and same for X2 and Y2. This means that we can
actually replace every expression with 2nmExt((αi, gi(Yσi(1))), (αi, hi(Yσi(2)))). Thus we arrive at ex-
actly a situation that the two-source non-malleable extractor can protect against (note that the advice strings
prevent fixed points).

Provided everything works, the overall error is 2ε1+ε2 = 2−k
γ1
1 +2−k

γ2
2 , where k1 = k and k2 = m1−

mβ1
1 , andm1 = kγ11 = kγ1 . To make sure the two-source condenser worked, we required k = k1 ≥ logC1 n.

And to make sure that the non-malleable extractor works, we just need t ≤ nγ22 and k2 ≥ n2 − nγ22 , where
n2 = m1 + a. Setting a = log t and β1 small enough yields the result.

3.4.1 Polylogarithmic good sources via correlation breakers and Ramsey graphs

Now that we have constructed our correlation breaker, we will put it good use, and prove the following.

Theorem 3.9 (A better extractor, in the few-long-sources setting - Theorem 3.2, restated). There exist
universal constants C, γ > 0 such that the following holds. There exists an explicit extractor Ext :
({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial sources withK ≥ logC N good sources of min-entropy
k ≥ logC n, which has output length m ≥ kγ and error ε = 2−k

γ
, provided that we also have k ≥ NC .

In order to get this improvement in the few-long-sources regime, the key idea is to call our three-source
correlation breaker over triples that exhibit a pairwise structure that three-source correlation breakers can
defend against. As it turns out, looking back at the definition of valid ordering from the beginning of this
section, one way to ensure that this happens is to call the three-source correlation breaker over the wedges
of a graph. As a reminder, a wedge in a graph G = ([N], E) is just a subset S ⊆ [N] of three vertices such
that the induced subgraph G[S] contains exactly two edges. The vertices of degree 1 in G[S] are called the
terminals of the wedge, whereas the other vertex (of degree 2) is called the anchor. Moreover, since we will
be calling a function on each wedge, we must give each wedge an orientation. Here, we orient any given
wedge as a triple (w1, w2, w3) so that w1, w2 are its terminals and w1 < w2. Furthermore, we will refer to
the collection of all oriented wedges in the graph as the oriented wedge setW ⊆ [N]3.

Now, since our three-source correlation breaker is acting as a robust three-source extractor, we will still
want to make sure that some call gets activated. Thus, we will want an explicit graph such that every big
enough subset of vertices contains a wedge. As it turns out, Ramsey graphs, defined below, will do the trick.

Definition 3.8. A graph G = (V,E) is called α-Ramsey if it has no clique nor independent set of size > α.

Lemma 3.12 (Finding wedges in Ramsey graphs). Let G = ([N], E) be an α-Ramsey graph. Let S ⊆ [N]
be a subset of size t that contains no wedge. Then t ≤ α2.

56

Proof. If the induced subgraphG[S] truly contains no wedge, then each connected component inG[S] must
be a clique.14 Suppose there are ℓ such components. We know that ℓ ≤ α, or else we could take one
vertex from each component and form an independent set of size > α. On the other hand, some connected
component must have size ≥ t/ℓ, simply by an averaging argument. Thus we need t/ℓ ≤ α as well, or else
we’ve found a clique of size > α. Combining these two bounds yields t ≤ αℓ ≤ α2, as desired.

Given these objects, we are ready to define our new framework for extracting from adversarial sources.

Lemma 3.13 (Extractors for adversarial sources via correlation breakers over a Ramsey graph). Let 3CB :
({0, 1}n)3 × [t] → {0, 1}m be a three-source correlation breaker for min-entropy k, tampering degree
t = N3, and error ε. Let G = ([N], E) be an α-Ramsey graph, and letW ⊆ [N]3 be its oriented wedge
set. Then the function Ext : ({0, 1}n)N → {0, 1}m defined as

Ext(x1, . . . , xN) :=
⊕

(i1,i2,i3)∈W

3CB(xi1 , xi2 , xi3 , (i1, i2, i3))

is an extractor for (N,α2 + 1, n, k)-adversarial sources with error ε.

Proof. Let X be an (N,K = α2 + 1, n, k)-adversarial source, and observe that since K > α2, and G is an
α-Ramsey graph, our wedge-finding lemma (Lemma 3.12) tells us that some oriented wedge (v1, v2, v3) ∈
W is completely covered by good sources. To make notation convenient, let us assume (without loss of
generality) that (v1, v2, v3) = (1, 2, 3). Now, to upper bound |Ext(X)−Um|, let us start by fixing all other
sources Xi such that i /∈ {1, 2, 3}. Consider now any oriented wedge (i1, i2, i3) ∈ W \ (1, 2, 3). We want to
examine the sources (Xi1 ,Xi2 ,Xi3) and see how they relate to (X1,X2,X3). There are two possibilities
here:

1. The terminals 1, 2 both appear among i1, i2, i3.

2. The terminals 1, 2 don’t both appear among i1, i2, i3.

Let us deal with each possibility separately. In the first case, we must have i1 = 1 and i2 = 2. Indeed,
notice that we must at least have {i1, i2} = {1, 2}, or else one wedge’s terminal will be another wedge’s
anchor (which is impossible, because these objects have different degrees). Further, our orientation tells us
that both 1 < 2 and i1 < i2, so it’s impossible that i2 = 1 and i1 = 2. Thus, we have (i1, i2) = (1, 2). Now,
notice that i3 is either equal to 3, or some vertex outside 1, 2, 3 (as a wedge must consist of three distinct
vertices). In the former case, Xi3 can obviously be written as a deterministic function of X3, as they are the
same source. In the latter case, however, this is still true, as we have already fixed all Xi, i /∈ {1, 2, 3}, and a
fixed constant is a deterministic function of anything (as it just ignores its input). Thus, in this case we must
have (Xi1 ,Xi2 ,Xi3) = (f1(X1), f2(X2), f3(X3)) for some deterministic functions f1, f2, f3.

For the second case, assume (without loss of generality) that 2 doesn’t appear among i1, i2, i3.
Then Xi1 ,Xi2 ,Xi3 are all either functions of X1,X3, or some fixed constants. This means there
exists some σ : [3] → [3] and deterministic functions f1, f2, f3 such that (Xi1 ,Xi2 ,Xi3) =
(f1(Xσ(1)), f2(Xσ(2)), f3(Xσ(3)) where 1, 2 do not both appear among σ(1), σ(2), σ(3). Since these
cases are exhaustive, this means that we can write

Ext(X) = 3CB(X1,X2,X3, 1, 2, 3)

⊕
⊕

w:=(i1,i2,i3)∈W\(1,2,3)

3CB(fw,1(Xσw(1)), fw,2(Xσw(2)), fw,3(Xσw(3)), (i1, i2, i3))

14This can be verified by induction on the number of vertices in the connected component.

57

for some deterministic functions fw,c and valid ordering σ. By combining this expression with (an ap-
propriate function plugged into) the data-processing inequality (Fact 2.3), we have |Ext(X) − Um| is at
most

|3CB(X1,X2,X3, 1, 2, 3) ◦ (3CB(fw,1(Xσw(1)), fw,2(Xσw(2)), fw,3(Xσw(3))))w

−Um ◦ (3CB(fw,1(Xσw(1)), fw,2(Xσw(2)), fw,3(Xσw(3))))w|.

But since w ranges over at most N3 wedges, and X1,X2,X3 each have min-entropy k, and all σw are valid
orderings, the properties guaranteed of our three-source correlation breaker with tampering degree t = N3

guarantee that the above is upper bounded by ε. This completes the proof.

Now that we have our framework in place, all that is left to do is instantiate it. We already saw how to
construct an explicit three-source correlation breaker, and thus the only thing we need is an explicit Ramsey
graph. Luckily, Li recently constructed excellent Ramsey graphs in his breakthrough work.

Lemma 3.14 (Ramsey graphs [Li23]). There exists a constant C > 0 such that there exists an explicit
α-Ramsey graph G = ([N], E) with α ≤ logC N .

Finally, we can obtain our significantly improved extractors for the few-long-sources setting.

Proof of Theorem 3.9. Instantiate Lemma 3.13 with Lemmas 3.9 and 3.14.

It is worth pointing out that the extra bound of the form k ≥ NC in Theorem 3.9 arises from the fact
that our framework requires our correlation breaker to handle tampering degree t = N3, while the highest
possible degree that it can handle is of the form t = kγ for some tiny constant γ.

3.4.2 Polynomial locality via correlation breakers and extremal C4-free graphs

We now turn towards an even more surprising application of the wedge extractor and correlation breaker
above: this framework can even be used to extract from adversarial sources where the bad sources depend
on the good sources! To show this, let’s first introduce a more general definition of adversarial sources.

Definition 3.9 (Adversarial source). A source X ∼ ({0, 1}n)N is called an (N,K, n, k)-adversarial source
of locality d if it consists of N sources of n bits X = (X1,X2, . . . ,XN), and both of the following hold:

• Somewhere good sources: There is a set S ⊆ [N], |S| ≥ K such that for any i ∈ S,H∞(Xi) ≥ k.
These sources are independent, and are called good sources.

• Bounded bad sources: Every other source Xi, i /∈ S is called a bad source, and is an arbitrary
deterministic function of at most d good sources.15

Notice that our original definition of adversarial sources (Definition 3.2) corresponds to d = 0. Now,
given this more general definition, we will prove the following result.

Theorem 3.10 (An extractor for high locality, in the few-long-sources setting - Theorem 3.3, restated).
There exist universal constants C, γ > 0 such that the following holds. There exists an explicit extractor
Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-sources of locality d ≤ Kγ with K ≥ N1−γ good sources of
min-entropy k ≥ logC n, which has output length m ≥ kγ and error ε = 2−k

γ
, provided that we also have

k ≥ NC .
15Without loss of generality, we can also allow the bad sources to depend on an arbitrary amount of additional randomness

completely independent of the good sources, as we can start all our proofs by fixing this additional randomness.

58

In order to prove this result, we will once again use our three source correlation breaker over the wedges
of a certain graph, just as in the previous section. Furthermore, we will again need to make sure that the
good sources land on some wedge, so that one of our correlation breaker calls will output uniform bits.
However, the question now is, how can we break all the correlation that will arise from having bad sources
that are not independent? Following a work of Viola [Vio14], the first idea is to get rid of as many as these
complex dependencies as possible. In this direction, the following lemma will be invaluable.

Lemma 3.15 (A reduction from d-local adversarial sources to low-weight 1-local adversarial sources). Let
X ∼ ({0, 1}n)N be an (N,K, n, k)-adversarial source of locality d > 1. Then X is a convex combination
of (N, K2

4Nd2
, n, k)-adversarial sources of locality 1 and weight w ≤ 2dN/K.

Proof. Identify X with a bipartite graph G = (V,E) over K + N vertices as follows: partition V into
L,R such that |L| = K and |R| = N . Identify all N sources of X with R, identify the good sources of
X with L, and draw an edge between u ∈ L and v ∈ R if Xu,Xv are correlated. We will find a subset
L′ ⊆ L of size K ′ ≥ K2/(4Nd2) such that every vertex in R has at ≤ 1 neighbor in L′, and every vertex
in L′ has ≤ 2dN/K neighbors in R. Then, if we fix all sources in {Xi}i∈L\L′ , we are done: the locality
is reduced to 1, K ′ good sources remain unfixed, and each unfixed good source has at most 2dN/K bad
sources depending on it.

First, note that because X has locality d, every vertex in R has degree at most d, and thus |E| ≤ Nd.
Next, observe that there must be some subset L∗ ⊆ L of size at least K/2 where each u ∈ L∗ has degree
at most 2dN/K; otherwise L contains at least K/2 vertices of degree > 2dN/K, contradicting |E| ≤ Nd.
We will now show how to select L′ from L∗.

For a vertex v ∈ V , we let N(v) denote its neighbors, and for a set of vertices S ⊆ V , we let N(S) =⋃
v∈V N(v). Now, we will greedily grow L′ as follows: first, initialize U ← L∗. Then arbitrarily pick a

vertex u from U and add it to L′, remove N(N(u)) from U , and repeat while U is not empty. Because each
v ∈ R has degree at most d, and each v ∈ L∗ has degree at most 2dN/K, the above process will produce
a set L′ of size at least K ′ := |L∗|/(2d2N/K) ≥ K2/(4Nd2). Furthermore, our selection process ensures
that we never select two vertices from L that share a neighbor, so no vertex inR has more than one neighbor
in L′. Lastly, because L′ ⊆ L∗, each vertex in L′ has at most 2dN/K neighbors in R, so we are done.

Given this reduction, we can pretty much assume that we are now just dealing with a 1-local adversarial
source X. But how can we go about extracting from these? The key idea is to visualize collecting all the
sources of X into K different clouds, where each cloud includes one of the good sources, and all of the
bad sources that depend on it. Since we are now dealing with a 1-local adversarial source, these clouds
are nonempty and disjoint. Now, recall that we will be extracting over the wedges of a graph, so we must
consider how these clouds interact with that graph. The idea is that if they form a joint structure that is
special enough, then the wedge extractor will work! As it turns out, the joint structure we are looking for is
something called a cloud wedge. Intuitively, a cloud wedge guarantees that the good sources not only land
on a wedge, but the clouds emanating from each vertex in this wedge also have a special structure: namely,
the clouds on the terminals of the wedge must not have any edges between them.

Definition 3.10 (Cloud-wedge). Let G = ([N], E) be a graph. Let S1, S2, S3 ⊆ [N] be nonempty disjoint
subsets, and let s1, s2, s3 ∈ [N] be vertices such that each si ∈ Si. We say that ({S1, S2, S3}, {s1, s2, s3})
is a cloud-wedge if {s1, s2, s3} is a wedge and there exist no edges crossing between the two clouds that
contain the terminals of this wedge.

Given a 1-local adversarial source with K good sources, is it possible to construct a graph such that no
matter where the good sources and their clouds are placed, we will always be able to find a cloud wedge?

59

Surprisingly, we actually show that the answer is yes. In fact, we show that if a graph has no cycle of length
4 as a subgraph (induced or otherwise), and its independence number is not too big, then one is always
guaranteed to find a cloud wedge. We prove the following, which is the main structural result of this section.

Lemma 3.16 (Finding cloud-wedges in extremal C4-free graphs). Let G = ([N], E) be a C4-free graph
with independence number α. Let S1, . . . , St ⊆ [N] be nonempty disjoint subsets of size at most w, and let
s1, . . . , st ∈ [N] be vertices such that each si ∈ Si. Suppose there do not exist indices i1, i2, i3 ∈ [t] such
that ({S1, S2, S3}, {s1, s2, s3}) is a cloud-wedge. Then t < 36w4α.

Proof. DefineA := {s1, . . . , st} and consider the induced subgraphG[A]. We start by looking for a big star
in this induced subgraph: namely, a complete bipartite graph with one vertex on one side, and many vertices
on the other side. Towards this end, let ∆ denote the maximum degree of any vertex in G[A], and suppose
(without loss of generality) that st is a maximum degree vertex. To get a quick lower bound on ∆, recall
that we can always find an independent set of size t/(∆ + 1) by iteratively grabbing vertices and throwing
away their neighbors: thus, we have α ≥ t/(∆+1), or rather ∆ ≥ t/α− 1. We can henceforth assume this
is at least 3, or else we would get an upper bound on t that trivially satisfies the lemma statement.

Now, if we let N denote the neighborhood of st in A, then the induced subgraph G[N] must have max-
imum degree 1: otherwise, st would form a four-cycle with three of its neighbors. This, in turn, means that
there must be an independent set of size ℓ ≥ ∆/2 ≥ t/(2α)− 2 among the neighbors of st. Without loss of
generality, suppose they are the vertices s1, . . . , sℓ, and notice that the induced subgraph G[{s1, . . . , sℓ, st}]
indeed forms a star. This means that si, sj , st form a wedge, for any 1 ≤ i < j ≤ ℓ.

If there is truly no cloud-wedge to be found, this means that there is an edge between every pair of
clouds Si, Sj for 1 ≤ i < j ≤ ℓ. Consider now the induced subgraph G′ := G[S1 ∪ · · · ∪Sℓ]. Since there is
an edge between every pair of clouds in G′, we know that each cloud Si has ≥ ℓ− 1 edges leaving it, which
means it must contain some vertex vi whose neighborhood Ni has size ≥ (ℓ− 1)/w. Since G′ is a C4-free
graph, the shared neighborhood Ni ∩Nj of any two distinct vertices vi, vj must have size 1.

Because of the discussion above, we know that any pair of vertices inG′ can show up together in at most
one neighborhood Ni. Thus, since the number of total vertex pairs in G′ is at most

(
wℓ
2

)
, and the number of

vertex pairs in each Ni is some mi ≥
(
(ℓ−1)/w

2

)
, we have

ℓ ·
(
(ℓ− 1)/w

2

)
≤
∑
i∈[ℓ]

mi ≤
(
wℓ

2

)
,

which implies ℓ < 16w4. Plugging in our lower bound from above ℓ ≥ t/(2α)− 2 yields the result.

Thus, we see that if we place a 1-local adversarial source onto the vertices of an extremal C4-free graph,
then we are guaranteed to be able to find a cloud-wedge, which will allow us to easily extract and break
correlation. Thus, by starting off with our reduction from d-local adversarial sources to 1-local adversarial
sources, we get the following framework for extracting from adversarial sources of high locality.

Lemma 3.17 (Extractors for adversarial sources via correlation breakers over a C4-free graph). Let 3CB :
({0, 1}n)3 × [t] → {0, 1}m be a three-source correlation breaker for min-entropy k, tampering degree
t = N3, and error ε. LetG = ([N], E) be a C4-free graph with independence number α, and letW ⊆ [N]3

be its oriented wedge set. Then the function Ext : ({0, 1}n)N → {0, 1}m defined as

Ext(x1, . . . , xN) :=
⊕

(i1,i2,i3)∈W

3CB(xi1 , xi2 , xi3 , (i1, i2, i3))

is an extractor for (N, 4dN5/6α1/6, n, k)-adversarial sources of locality d with error ε.

60

Proof. Let X be an (N,K, n, k)-adversarial source of locality d, whereK ≥ 4dN5/6α1/6. By our reduction
from d-local adversarial sources to low-weight 1-local adversarial sources (Lemma 3.15), we can assume
(without loss of generality)16 that X is an (N,K ′, n, k)-adversarial source of locality 1 and weight w ≤
2dN/K, with K ′ ≥ K2

4Nd2
good sources. Without loss of generality (just for notational convenience),

assume that the good sources in X are X1, . . . ,XK′ .
Now, for every i ∈ [K ′], let Di ⊆ [N] denote the collection of sources that depend on the good source

i (including i itself). By definition of adversarial source of locality 1 and weight w, we know that these
Di’s are nonempty, disjoint, and have size at most w. Let us now try to find a cloud-wedge among the
subsets D1, . . . , DK′ ⊆ [N] and vertices 1, 2, . . . ,K ′ where each i ∈ Di. By our cloud-wedge-finding
(Lemma 3.16), we know this is possible as long as K ′ ≥ 36w4α. Plugging in our known values of K ′ and
w4, we just need

K2

4Nd2
≥ 36

(
2dN

K

)4

α,

or rather
K ≥ (36)1/6 · 2dN5/6α1/6.

And, indeed, we were originally guaranteed K ≥ 4dN5/6α1/6. Thus, we know that among the subsets
D1, . . . , DK′ and vertices 1, . . . ,K ′ with each i ∈ Di, there is some cloud-wedge present. Without loss of
generality (again for notational convenience), let us assume ({D1, D2, D3}, 1, 2, 3) is a cloud-wedge, and
that (1, 2, 3) is the oriented version of the wedge {1, 2, 3}.

Now, let us fix all good sources Xi, i /∈ [3]. Notice the sources X1,X2,X3 are still independent and
have not lost any entropy, and furthermore every other source (good or bad) is either fixed, or a deterministic
function of one of X1,X2,X3. Let δ : [N] \ [3] → [3] ∪ {0} capture this dependency; namely, if i is in
some cloud Db, b ∈ [3], then δ(i) := b (recall that it can be in at most one cloud). On the other hand, if j
does not belong to any of the clouds D1, D2, D3, then δ(i) := 0.

Now, consider any oriented wedge (i1, i2, i3) ∈ W \ (1, 2, 3). We want to examine the sources
Xi1 ,Xi2 ,Xi3 and see how they relate to X1,X2,X3. There are two possibilities here.

1. The terminals 1, 2 both appear among δ(i1), δ(i2), δ(i3).

2. The terminals 1, 2 don’t both appear among δ(i1), δ(i2), δ(i3).

Let’s deal with each possibility separately. In the first case, notice that we cannot have δ(i3) ∈ {1, 2},
or in other words: i3 /∈ D1 ∪ D2. To see why, simply note that if i3 were in either of these sets, say
D1, then i1 or i2 must be in D2 by the case condition. But this is impossible, since (i1, i2, i3) is an
oriented wedge with terminals i1, i2, and thus the above situation would force an edge between D1, D2

(contradicting the definition of cloud-wedge). Therefore, in this case we must have δ(i3) ∈ {0, 3} and
{δ(i1), δ(i2)} = {1, 2}. This means that Xi3 can be written as a deterministic function (perhaps a con-
stant one) of X3, whereas Xi1 ,Xi2 can be written as deterministic functions of X1,X2 (respectively), or as
X2,X1 (respectively). Thus, there is a valid ordering σ : [3] → [3] and deterministic functions f1, f2, f3
such that (Xi1 ,Xi2 ,Xi3) = (f1(Xσ(1)), f2(Xσ(2)), f3(Xσ(3))).

In the second case, assume (without loss of generality) that 2 doesn’t appear among δ(i1), δ(i2), δ(i3).
Then Xi1 ,Xi2 ,Xi3 are all either functions of X1,X3, or some fixed constants. Thus there is some σ : [3]→
[3] and deterministic functions f1, f2, f3 such that (Xi1 ,Xi2 ,Xi3) = (f1(Xσ(1)), f2(Xσ(2)), f3(Xσ(3))),
where 1, 2 do not both appear among σ(1), σ(2), σ(3).

16As a reminder, this is because an extractor for a family of sources is also an extractor for convex combinations of members
from that family.

61

Thus for any (i1, i2, i3) ∈ W\(1, 2, 3), there exist deterministic functions f1, f2, f3 and a valid ordering
σ : [3] → [3] such that (Xi1 ,Xi2 ,Xi3) = (f1(Xσ(1)), f2(Xσ(2)), f3(Xσ(3))). The remainder of the proof
is now identical to that of Lemma 3.13.

With our framework in hand and our correlation breaker ready to go, the very last thing we need are
explicit C4-free graphs with small independence number. Luckily for us, such constructions exist.

Lemma 3.18 (Extremal C4-free graphs [Alo86]). There exists an explicit C4-free graph G = ([N], E) with
independence number α(G) ≤ 2N3/4.

By plugging these C4-free graphs and our correlation breakers into the framework from above, we finally
get our adversarial source extractors for high locality.

Proof of Theorem 3.10. Instantiate Lemma 3.17 with Lemmas 3.9 and 3.18.

3.5 Optimized extractors for many short sources

In the previous section, we showed that one can get much improved extractors for adversarial sources, should
the adversarial source consist of just a few, long sources. It is natural to ask what happens in the other regime,
when it consists of many, short sources. As it turns out, we can get the exact same improvements in this
setting, and the proofs are much easier! The reason is because in such a setting, adversarial sources can be
reduced to a much simpler model, known as a low-weight affine source.

Low-weight affine sources

As we will see in Chapter 6, affine sources are a unifying model in extractor theory, capturing a ton of
seemingly unrelated families of sources. In this section, we’ll add another one to the list. In a little more
detail, an affine source X is simply a distribution that is uniform over some affine subspace of Fn2 . More
formally, these sources take the form X = AUk + b, where A ∈ Fn×k2 is some matrix with full column
rank, b ∈ Fn2 is an arbitrary vector, and Uk is a uniform random variable. While affine sources are generally
quite challenging to extract from, certain specializations of them are much easier. One such specialization
is the family of weight w affine sources (for some small w), defined to be those for which the columns of A
each have Hamming weight at most w. While we still don’t have many great low-error extractors for affine
sources in general, we do have excellent low-error extractors for low-weight affine sources:

Lemma 3.19 (An explicit extractor for low-weight affine sources [Rao09b, DW12, Vio14]). For any fixed
δ > 0, there exist constants C, γ > 0 such that the following holds. There exists an explicit extractor
Ext : {0, 1}n → {0, 1}m for affine sources of min-entropy k ≥ logC n and weight w ≤ k1−δ, which has
output length m ≥ kγ and error ε = 2−k

γ
.

With this in mind, the goal will be to show that in the many-short-source setting, adversarial sources can
be effectively reduced to low-weight affine sources, from which extraction is easy via the lemma above. In
fact, we will actually reduce our adversarial sources to an even more specialized model, which we might
call 1-local weight w affine sources. Such sources not only guarantee that the column weights of A are at
most w, but that the row weights of A are at most 1. The following lemma will be remarkably helpful.

Lemma 3.20 (A reduction from general sources to 1-local sources). Let X ∼ {0, 1}n be a source of min-
entropy k ≥ 1. Then X is a convex combination of 1-local sources of min-entropy 1.

62

Proof. Since X has min-entropy at least ≥ 1, it is a convex combination of flat sources with min-entropy
exactly 1 (Fact 2.9). But any flat source X′ with min-entropy 1 is (by definition) a uniform distribution over
two distinct strings x, y ∈ {0, 1}n. And any two distinct strings must differ at some coordinate α ∈ [n].
Thus X′α is a uniform bit, and it is easy to verify that every other bit X′i, i ̸= α is either constantly 0,
constantly 1, or exactly equal to X′α or X′α ⊕ 1. In other words, every other bit is a deterministic function
of X′α, meaning that X′ is a 1-local source.

A simple corollary of the above result, which will serve as a core tool in our extractors, is the following.

Corollary 3.1 (A reduction from 1-local adversarial sources to 1-local sources). Let X ∼ ({0, 1}n)N be an
(N,K, n, k ≥ 1)-adversarial source of locality d ≤ 1 and weight w. Then, X is a convex combination of
1-local sources of min-entropy K and weight wn.

Proof. By the definition of adversarial sources (Definition 3.9) and Lemma 3.20, we can assume (without
loss of generality) that each good source in X is a 1-local source of min-entropy 1, while every bad source
is a deterministic function of at most 1 good source. But since each good source Xi is a 1-local source
of min-entropy 1, there is a single bit in Xi that determines all of its other bits. This means that any bad
source depending on Xi is a deterministic function of that single bit alone. Thus, X consists of K uniform
independent bits (one for each good source), with the remaining Nn−K bits being a deterministic function
of exactly 1 of these good bits each. In other words, X is a 1-local source of min-entropy K. Finally, since
X was originally an adversarial source of weight w, each good source can influence up to w other sources
(including itself), and every source (good or bad) has length n. Thus, the 1-local source discussed above
must have weight wn, as desired.

Given the tools from above, we are ready to construct our two new extractors for adversarial sources.

3.5.1 Polylogarithmic good sources via extractors for low-weight affine sources

Our first optimized extractor for the many-short-sources setting matches the improvements seen by our first
optimized extractor for the few-long-sources setting (Theorem 3.9).

Theorem 3.11 (A better extractor, in the many-short-sources setting (Theorem 3.4, restated)). There ex-
ist universal constants C, γ > 0 such that the following holds. There exists an explicit extractor Ext :
({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial sources withK ≥ logC N good sources of min-entropy
k ≥ 1, which has output length m ≥ Kγ and error ε = 2−K

γ
, provided that we also have K ≥ nC .

Proof. Let X ∼ ({0, 1}n)N be an (N,K, n, k ≥ 1)-adversarial source (of locality 0). Note that since X
is an adversarial source of locality 0, it is also an adversarial source of weight 1 (since the only source
correlated with a good source is itself). Thus, applying our reduction from 0-local adversarial sources to
1-local sources (Corollary 3.1), we get that X ∼ {0, 1}Nn is a convex combination of 1-local sources of
min-entropyK and weight n. Given Rao’s explicit low-weight affine extractor (Lemma 3.19), we know that
we can extract m ≥ Kγ bits with error ε = 2−K

γ
, as long as K ≥ logC(Nn) and n ≤ K0.99, where C is a

large enough constant and γ is a small enough one. Notice that the latter two conditions are satisfied as long
as K ≥ nC′

and K ≥ logC
′
N for a large enough constant C ′. The result follows.

3.5.2 Polynomial locality via extractors for low-weight affine sources

Complementing the result above, our second optimized extractor for the many-short-sources setting matches
the improvements seen by our second optimized extractor for the few-long-sources setting (Theorem 3.10).

63

Theorem 3.12 (An extractor for high locality, in the many-short-sources setting (Theorem 3.5, restated)).
There exist universal constants C, γ > 0 such that the following holds. There exists an explicit extractor
Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-sources of locality d ≤ Kγ with K ≥ N1−γ good sources
of min-entropy k ≥ 1, which has output length m ≥ Kγ and error ε = 2−K

γ
, provided that we also have

K ≥ nC .

Proof. Let X ∼ ({0, 1}n)N be an (N,K, n, k ≥ 1)-adversarial source of locality d. By our reduction from
d-local adversarial sources to low-weight 1-local adversarial sources (Lemma 3.15), we know that X is a
convex combination of (N, K2

4Nd2
, n, k)-adversarial sources of locality 1 and weight at most 2dN/K. Then,

by further applying our reduction from 1-local adversarial sources to 1-local sources (Corollary 3.1), we get
that X ∼ {0, 1}Nn is a convex combination of 1-local sources of min-entropy Γ ≥ K2

4Nd2
and weight w ≤

(2dN/K)n = 2dnN/K. Given Rao’s explicit low-weight affine extractor (Lemma 3.19), we can extract
m ≥ Γγ bits with error ε = 2−Γ

γ
, as long as Γ ≥ logC(Nn) and w ≤ Γ0.99, where C is a large enough

constant and γ is a small enough one. Plugging in our values for Γ and w, it is straightforward to verify

that the last two conditions hold as long as K ≥ 2d
√
N logC(Nn) and K ≥ 2dN0.67n0.34. Moreover, we

can ensure Γ ≥ K0.01 (to ensure the correct output length and error) as long as K ≥ 4d1.01N0.51. Notice
that all three conditions are satisfied as long as K ≥ nC

′
and K ≥ N1−γ′ and d ≤ Kγ′ for a large enough

constant C ′ and a small enough constant γ′. The result follows.

This concludes the presentation, discussion, and proofs of our five main results (Theorems 3.1 to 3.5).
Next, we move on to discuss some exciting applications.

3.6 Applications in pseudorandomness

As we have seen, adversarial sources are a natural generalization of the classical independent source model,
and are therefore interesting to study in their own right. As it turns out, however, adversarial sources are also
general enough to model several other important settings in pseudorandomness, distributed computing, and
cryptography, yielding applications in each. Within pseudorandomness (in particular, the theory of extrac-
tors), adversarial sources capture two other well-studied models of weak random sources. As a result, our
new extractors for adversarial sources immediately give new and improved extractors in these two settings.

3.6.1 Extractors for total-entropy sources

The first well-studied model for which we get new-and-improved extractors (via our extractors for adversar-
ial sources) is the model of total-entropy sources. Total-entropy sources are a natural generalization of the
classical independent source model, and are formally defined as follows.

Definition 3.11 (Total-entropy source). A random variable X ∼ ({0, 1}n)N is called an (N,n,Γ)-total-
entropy source if each Xi ∼ {0, 1}n is independent and H∞(X) ≥ Γ.

Total-entropy sources were first introduced by Kamp, Rao, Vadhan and Zuckerman [KRVZ11], though
similar models appear in the earlier works of König and Maurer [KM04, KM05]. Total-entropy sources are
not only a more robust model of independent sources, but they also play a fundamental role in extracting
from other, more well-studied, models of randomness [KRVZ11]. In this work, we construct significantly
improved (low-error) extractors for total-entropy sources, and prove the following theorem.

64

Theorem 3.13 (Improved extractors for total-entropy sources). For any fixed δ > 0, there exist constants
C, γ > 0 such that the following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for
(N,n,Γ)-total entropy sources of min-entropy Γ ≥ CnN δ+C(nN)1/2+δ, which has output lengthm ≥ Γγ

and error ε = 2−Γ
γ
.

Previously, the best-known low-error explicit extractors for total-entropy sources required min-entropy
Γ = O(nN1/2 + (nN)1−γ) [KRVZ11, Theorem 1.6], whereas non-explicitly it is known that there exist
such extractors for min-entropy Γ = O(n+ logN) [KRVZ11, Theorem 1.10].17 Thus, while there is still a
lot of room for improvement, our total-entropy extractor is almost optimal when the source does not consist
of too many subsources.

Remark 3.1. The entropy requirement in Theorem 3.13 becomes Γ = O(n1+δ) whenN ≤ n, which is close
to the optimal entropy requirement of Γ = O(n).

In order to prove Theorem 3.13, we simply use our new extractor for adversarial sources (Theorem 3.1),
without any further modifications. In order to do so, we establish a connection between total-entropy sources
and adversarial sources. This connection has been observed in prior work (under different terminology) - we
emphasize that the new contribution here is the new extractor for adversarial sources that we plug into this
known connection. We formally describe this connection below, and show how it can be used (in conjunction
with Theorem 3.1) to obtain our new-and-improved extractors for total-entropy sources.

A known reduction from total-entropy sources to adversarial sources As hinted at before, total-
entropy sources are very similar to adversarial sources, with one key difference. While an (N,K, n, k)-
adversarial source X ∼ ({0, 1}n)N offers the guarantee that at least K subsources each have min-entropy
at least k, an (N,n,Γ)-total-entropy source X ∼ ({0, 1}n)N only guarantees that the total min-entropy
across all the subsources is at least Γ. Thus, while an (N,K, n, k)-adversarial source is always an
(N,n,Kk)-total-entropy source, the converse is not necessarily true. So, how can we use our improved
adversarial source extractors to obtain Theorem 3.13?

While an (N,n,Kk)-total-entropy source is not necessarily an (N,K, n, k)-adversarial source, it does
turn out to be an adversarial source with weaker parameters. The intuition is that if the total-entropy source
X ∼ ({0, 1}n)N has enough min-entropy, then there must be at least a few subsources each with at least
a little bit of min-entropy: otherwise, every single subsource would have extremely little entropy, and the
total-entropy of X would not be very high at all. This can be formalized via the following lemma, which is
proved using a Markov-type argument.

Lemma 3.21 (A reduction from total-entropy sources to adversarial sources [KRVZ11, Lemma 4.1,
adapted]). If X is an (N,n,Γ)-total-entropy source, then it is also an (N,K, n, k)-adversarial source, as
long as

Γ ≥ Kn+Nk.

Proof. Let X ∼ ({0, 1}n)N be an (N,n,Γ)-total-entropy source. Let S ⊆ [N] be the indices of the
subsources in X with entropy at least k. Observe that each subsource Xi with i ∈ S has min-entropy at
most n, while each subsource Xi with i /∈ S has min-entropy less than k. If |S| < K, then the total entropy
in X is Γ < |S| · n+ |[N] \ S| · k < Kn+Nk, which contradicts the guaranteed lower bound on Γ.

17Furthermore, it is known that this non-explicit entropy requirement is near-optimal, as the classic extractor impossibility result
(Fact 1.1) rules out the existence of extractors for total-entropy sources with Γ = n− 1.

65

Given this reduction from total-entropy sources to adversarial sources, it is now a straightforward (but
tedious) calculation to obtain Theorem 3.13 using our new extractors for adversarial sources.

Proof of Theorem 3.13. Let X ∼ ({0, 1}n)N be an (N,n,Γ)-total-entropy source, and let t ∈ N be an
arbitrary integer that divides N , which we will set later. If we consider every t consecutive subsources of X
as a single subsource, we may instead interpret X as a random variable over ({0, 1}nt)N/t, meaning that X
is also an (N/t, nt,Γ)-total-entropy source. And by the reduction from total-entropy sources to adversarial
sources (Lemma 3.21), we know that X is also an (N/t,K, nt, k)-adversarial source, as long as

Γ ≥ Knt+Nk/t. (3.1)

Now, applying our new extractor for adversarial sources (Theorem 3.1), we know that we can extractm ≥ kγ
bits with error ε = 2−k

γ
, as long asK ≥ C(N/t)δ and k ≥ C(nt)δ.18 Plugging this into Equation (3.1), we

get that for any t ∈ N that divides N , there exists an explicit extractor for (N,n,Γ)-total-entropy sources
with output length m ≥ C(nt)δ and error ε = 2−C(nt)δγ , as long as

Γ ≥ C(N/t)δnt+ CN(nt)δ/t = CnN δt1−δ + CNnδ/t1−δ.

All that remains is to set t to minimize the entropy requirement. We would like to set t =
√
N/n in order

to two terms in the above expression and obtain Γ ≥ 2C(Nn)1/2+δ/2. However, this is clearly not possible
when N < n. Thus we consider two cases.

1. If N < n, we set t = 1. In this case, we get an explicit extractor for (N,n,Γ)-total-entropy sources
with output length m ≥ C(nt)δ = Cnδ ≥ C(Nn)δ/2 ≥ CΓδ/2 and error ε = 2−C(nt)δγ ≤ 2−CΓδγ/2

,
as long as Γ ≥ CnN δ + CNnδ, where the latter expression is at most CnN δ + C(N δn1−δ)nδ ≤
2CN δn.

2. If N ≥ n, we set t =
√
N/n, which is now guaranteed to be at least 1.19 In this case, we get an

explicit extractor for (N,n,Γ)-total-entropy sources with output length m ≥ C(nt)δ = C(Nn)δ/2 ≥
CΓδ/2 and error ε = 2−C(nt)δγ = 2−C(Nn)δγ/2 ≤ 2−CΓδγ/2

, as long as Γ ≥ CnN δ(
√
N/n)1−δ +

CNnδ/(
√
N/n)1−δ = 2C(Nn)1/2+δ/2.

Thus in both cases, we extract m ≥ CΓδ/2 bits with error ε ≤ 2−CΓδγ/2
, as long as Γ ≥

2Cmax{nN δ, (Nn)1/2+δ/2}. Resetting constants δ, C, γ appropriately completes the proof.

Above, we have seen that our new extractors for adversarial sources immediately yield new-and-
improved extractors for total-entropy sources. One reason why total-entropy sources are interesting to
study is because they play a fundamental role in extracting from another, more well-studied model of weak
randomness. In the next subsection, we discuss this connection further and demonstrate how our improved
extractors for total-entropy sources also yield improved extractors in this more well-studied setting.

18Note that we can actually handle k ≥ logC(nt), but we will instead enforce k ≥ C(nt)δ to keep our error small and output
length large.

19While t is now guaranteed to be at least 1, it is not guaranteed to divide N . However, it is straightforward to slightly modify
the argument in such a case: i.e., set t = ⌊

√
N/n⌋ and restart the proof with the prefix of X over ({0, 1}nt)⌊N/t⌋. Since this

removes < t subsources from X, it removes < tn ≤
√
Nn bits of entropy from X. This loss in entropy can be captured by the

hidden constant C in the entropy requirement.

66

3.6.2 Extractors for small-space sources

The second well-studied model for which we get new-and-improved extractors (via our extractors for ad-
versarial sources) is the model of small-space sources. At a high-level, small-space sources are distributions
that can be sampled by algorithms with limited memory. To model an algorithm with limited memory, we
use branching programs. A branching program of width w and length n is a directed acyclic graph with
n + 1 layers, where the first layer has one node, the remaining layers have w nodes each, and every edge
starting in layer i terminates in layer i+ 1. Small-space sources are then defined as follows.

Definition 3.12 (Small-space source). A random variable X ∼ {0, 1}n is called a space s source if it is
generated by a random walk starting on the first layer of a branching program of width 2s and length n,
where each edge is labeled with an output bit and some transition probability.

Small-space sources were first introduced by Kamp, Rao, Vadhan and Zuckerman [KRVZ11], though
similar models were studied in the earlier works of Blum [Blu86], Vazirani [Vaz87a], and König and Maurer
[KM04, KM05]. More generally, small-space sources fit into the line of work initiated by Trevisan and
Vadhan [TV00] on extracting from distributions that can be sampled by algorithms with limited resources.
The motivation to study such sources comes from the belief that they model distributions that one might
actually find in nature [Lev86, TV00]. Beyond this motivation, small-space sources are also general enough
to capture several other well-studied models of randomness [vN51, Blu86, Vaz87a, KM04, KM05, CFG+85,
KZ07, CG88]. In this work, we construct significantly improved (low-error) extractors for small-space
sources, and prove the following theorem.20

Theorem 3.14 (Improved extractors for small-space sources). For any fixed 0 < δ ≤ 1/2, there exist
constants C, γ > 0 such that the following holds. There exists an explicit extractor Ext : {0, 1}n → {0, 1}m
for space s sources of min-entropy k ≥ Cn1/2+δs1/2−δ, which has output length m ≥ kγ and error
ε = 2−k

γ
.

Previously, the best-known low-error explicit extractors for small-space sources required min-entropy
k ≥ O(n1−γ + n2/3s1/3), where γ > 0 is some tiny constant [KRVZ11, Theorem 1.2]. As a result, we
improve the entropy requirement from k ≥ O(n1−γ) to k ≥ O(n1/2+δ) for all small-space sources with
s ≤ nδ. For even larger settings of s, a straightforward calculation shows that our new entropy requirement
is just as good as (and usually significantly better than) the previous state-of-the-art.21 Non-explicitly,
on the other hand, it is known that there exist low-error extractors for space s sources with min-entropy
k ≥ O(s + log n) [KRVZ11, Theorem 1.5].22 Thus, while there is still a lot of room for improvement, we
note that any further progress would require substantially new techniques.

Remark 3.2. Like the previous-best extractors for small-space sources [KRVZ11], our new extractors follow
from a reduction to total-entropy sources. As we will see, it is impossible to achieve min-entropy k < n1/2

using such a reduction. Thus, our requirement of k ≥ O(n1/2+δs1/2−δ) is near-optimal for this technique.

20In this thesis, we construct several new-and-improved extractors for small-space sources. Here, we only briefly highlight the
result that comes for free from our new extractors for adversarial sources. In Chapter 7, we provide an in-depth treatment of all of
our new extractors for small-space sources.

21Indeed, note that n2/3s1/3 ≥ n1/2+δs1/2−δ as long as s ≤ n. For s ≥ n, both bounds enforce a trivial entropy requirement
of k ≥ n.

22It is known that this non-explicit entropy requirement is near-optimal, as the classic extractor impossibility result rules out the
existence of extractors for space s sources of min-entropy k = s − 1 (since a space s source can sample an arbitrary distribution
over 2s strings).

67

In order to prove Theorem 3.14, we simply use our new extractor for total-entropy sources (Theo-
rem 3.13), without any further modifications.23 In order to do so we establish a connection between small-
space sources and total-entropy sources. This connection has been observed in prior work (under different
terminology) - we emphasize that the new contribution here is the new extractor for total-entropy sources
that we plug into this known connection. We formally describe this connection below, and show how it
can be used (in conjunction with Theorem 3.13) to obtain our new-and-improved extractors for small-space
sources.

A known reduction from small-space sources to total-entropy sources At first glance, small-space
sources and total-entropy sources seem quite different. After all, total-entropy sources consist of indepen-
dent subsources, while small-space sources are certainly not guaranteed to have this property. However,
it turns out that small-space sources are a convex combination of sources with this property. Indeed, the
key insight (which can be traced back to the work of König and Maurer [KM04, KM05]) is the following.
Given a small-space source X ∼ {0, 1}n with min-entropy k, if you condition on hitting a certain node
v in the middle layer of the branching program that generates X, then X is broken into two independent
parts: the bits produced before hitting the middle layer, and the bits produced after hitting the middle layer.
Thus, by considering all possible nodes v that could be hit in the middle layer (by the random walk gen-
erating X), we get that X is a convex combination of sources {X′}, each consisting of two independent
subsources X′ = (X′1,X

′
2) ∼ ({0, 1}n/2)2. Furthermore, by the entropy chain rule (Lemma 2.1), each X′

has min-entropy roughly k − s. Thus, using the inner product extractor, one can extract as long as we have
k − s > n/2 [KM04, KM05].

Unfortunately, the above technique fails if one hopes to extract from min-entropy k < n/2, since all of
the min-entropy could be stuck in X′1 or X′2, and the classic extractor impossibility result (Fact 1.1) says
that it is impossible to extract from such sources. In order to get around this k = n/2 barrier, the key idea
of Kamp, Rao, Vadhan and Zuckerman [KRVZ11] is to generalize the above argument to create several
independent subsources, each of length≪ n/2 (so that the entropy cannot get stuck in a single subsource).
To do this, instead of conditioning on hitting a certain node v in the middle layer of the branching program
that generates X, they condition on hitting certain nodes v1, . . . , vr across several (equally-spaced) layers.
Indeed, under such a conditioning, X becomes a sequence of several independent subsources (of the same
length). Furthermore, depending on how many layers are fixed, we lose just a little more entropy than before.
This is formalized via the following lemma.

Lemma 3.22 (A reduction from small-space sources to total-entropy sources [KRVZ11, Lemma 3.1,
adapted]). Let X ∼ {0, 1}n be a space s source with min-entropy k. If r = k/(4s) and ℓ = 4ns/k are
positive integers, then X is 2−k/4-close to a convex combination of (r, ℓ, k/2)-total entropy sources.

Proof. Let W = (W0,W1, . . . ,Wn) ∼ ({0, 1}s)n+1 be a random variable holding the states reached
in layers 0, 1, . . . , n of the branching program in the random walk that generates X. Observe that fix-
ing any Wi breaks X into two independent sources. More generally, observe that if we define W∗ :=
(Wℓ,W2ℓ, . . . ,Wrℓ), then if we condition X on any fixing of W∗, it must hold that X becomes an (r, ℓ,Γ)-
total entropy source, for some Γ. And by the entropy chain rule (Lemma 2.1), we know that Γ is close to k
with high probability. More formally,

Pr
w∼W∗

[H∞(X |W∗ = w) ≥ k − rs− k/4 = k/2] ≥ 1− 2−k/4.

23Furthermore, since our extractor for total-entropy sources is simply our new extractor for adversarial sources (Theorem 3.1),
we are ultimately using an extractor for adversarial sources (without any further modifications) in order to extract from small-space
sources.

68

In other words, the random variable (X |W∗ = w) is an (r, ℓ, k/2)-total entropy source with probability at
least 1− 2−k/4 over w ∼W∗. This completes the proof.

Given this reduction from small-space sources to total-entropy sources, it is now a straightforward (but
tedious) calculation to obtain Theorem 3.14 using our new extractors for total-entropy sources.

Proof of Theorem 3.14. Let X ∼ {0, 1}n be a space s source of min-entropy at least k. By the reduction
from small-space sources to total-entropy sources (Lemma 3.22), we know that X is 2−k/4-close to a convex
combination of (k/(4s), 4ns/k, k/2)-total entropy sources.24 Now, applying our new extractor for total-
entropy sources (Theorem 3.13), we know that we can extract m ≥ (k/2)γ bits with error ε = 2−(k/2)

γ
+

2−k/4, as long as
(k/2) ≥ C(4ns/k)(k/(4s))δ + Cn1/2+δ.

In order for this to hold, it suffices to have both k ≥ 4C(4ns/k)(k/(4s))δ and k ≥ 4Cn1/2+δ. In order
for the first requirement to hold, it suffices to have k ≥ 4C

1
2−δn

1
2−δ s

1−δ
2−δ = 4s · (Cn/s)

1
2−δ . And since

1
2−δ ≤ 1/2+ δ for the current setting of δ ∈ (0, 1/2], it suffices to have k ≥ 4s · (Cn/s)1/2+δ, or rather k ≥
4Cs · (n/s)1/2+δ = 4Cn1/2+δs1/2−δ. Since we are assuming that s ≥ 1, this also implies k ≥ 4Cn1/2+δ.
Thus, summarizing the above, we can extract m ≥ (k/2)γ bits with error ε = 2−(k/2)

γ
+ 2−k/4, as long as

k ≥ 4Cn1/2+δs1/2−δ.

Resetting constants C, γ appropriately completes the proof.

Above, we have seen that our new extractors for total-entropy sources immediately yield new-and-
improved extractors for small-space sources. And since our extractors for total-entropy sources are simply
our new extractors for adversarial sources, we see that our new extractors for adversarial sources immedi-
ately yield new-and-improved extractors for small-space sources.

Our new low-error extractors for space s sources improve the entropy requirement from k = O(n1−γ)
to k = O(n1/2+δ) when s is not too big. Previously, we noted (in Remark 3.2) that this is almost the best
possible entropy requirement that can be achieved using the above technique. In particular, it is impossible
to obtain an entropy requirement of k <

√
n using a reduction from small-space sources to total-entropy

sources - no matter how we set the number r of subsources and the length ℓ of each subsource. To see why,
note that since rℓ = n, it must be the case that either ℓ >

√
n or ℓ ≥

√
n. In the first case, all of the entropy

could be trapped in a single source of length > k, from which extraction is impossible. In the second case,
the application of the entropy chain rule in the proof of Lemma 3.22 would leave the source with 0 bits
of entropy, from which extraction is also impossible. In a later chapter (Chapter 7), we will see how to
overcome this barrier via a new type of reduction, and construct (higher error) extractors for small-space
sources with min-entropy k ≪

√
n.

3.7 Applications in distributed computing

Randomness is vital in distributed computing, enabling a whole host of applications that would not otherwise
be possible (Section 1.1). However faulty processors are everywhere in this field, and simply cannot be
trusted. This is the perfect playground for adversarial source extractors, which are capable of of producing
uniform bits even in such unreliable environments. We highlight one such application, below.

24We assume that k/(4s) and 4ns/k are positive integers, as it is easy to extend the argument when this is not the case (i.e.,
using similar tricks to those described in the proof of Theorem 3.13).

69

3.7.1 Collective coin flipping

In the collective coin flipping problem, N parties get together in an effort to produce a common random
bit. However, the catch is that not all of them are honest, and some of them may be trying to influence
the outcome. Ever since it was first introduced by Ben-Or and Linial in 1985 [BL85] this has become
a fundamental problem in not only distributed computing [Dod06], but also pseudorandomness [CZ19].
Indeed, this problem is equivalent to constructing extractors for non-oblivious bit-fixing (NOBF) sources,
which have played a big role in modern day extractor theory, along with their close cousins, the oblivi-
ous bit-fixing source [Vaz87b, BBR88, CFG+85] and symbol-fixing source [KM04, KZ07]. Our model of
adversarial sources generalize all of these - most notably, to a setting where each party may hold some
imperfect randomness. Thus, it would be interesting to see if our extractors (or the techniques that go into
building them) could be applied to improve existing results on distributed computing with weak randomness
[GSV05, KLRZ08, KLR09].

3.8 Applications in cryptography

Just like with distributed computing, cryptography is plagued with the problem of needing randomness, but
trusting no one. We believe that our adversarial source extractors may help.

3.8.1 The common reference string (CRS) model

The common reference string (CRS) model is popular setting in which to study cryptography, in which it is
assumed that all parties have access to a common random string that is trusted. Given such an assumption,
one can construct a variety of important cryptographic primitives that would otherwise be impossible in
the standard model, including non-interactive zero-knowledge (NIZK) proofs [BFM88] and more [CF01].
However, this immediately raises the question of where this trusted string should come from. Adversarial
source extractors provide one solution: for example, our Theorem 3.3 could be used to generate a reliable
random string among a reasonable number of parties, even if the honest players have extremely low min-
entropy, there are much more bad players, and the bad players can see the randomness of (a large fraction)
of the honest players. It appears that a few works have recently began to study this exact question [GK08,
GGJS11, GO14], and it remains an interesting future direction to explore how adversarial source extractors
fit into the picture.

3.9 Future directions

Extractors for independent sources are one of the most well-studied primitives in the world of extrac-
tors. In the past decade alone, there have been several exciting breakthroughs in constructing these ob-
jects [Li15, CZ19, Li19], and just a few months ago, a huge announcement was made [Li23] that we
now have explicit two-source extractors (with constant error) that can handle truly logarithmic entropy
k ≥ O(log n). However, despite these amazing advancements, there has been little attention given to ex-
tracting from independent sources in more robust settings. While some existing extractors can handle such
settings [RY11, CL16b, CZ16, CL20, CL22], they all require high entropy, or have high error. This is
especially problematic, due to the natural applicability of these objects in cryptography.

In this chapter, we launched a systematic study of adversarial sources, which make the classical inde-
pendent source model more robust by allowing some of the sources to have no entropy at all. We studied

70

(N,K, n, k)-adversarial sources, which consist ofN sources of length n, where at leastK of them have min-
entropy at least k. We presented a variety of constructions across a large range of parameters, and exploited
new tools from extractor theory and combinatorics (which are built via new connections to communication
complexity and coding theory). Since our work was published [CGGL20, CG21], several exciting follow-
ups have emerged, which study adversarial source extractors under computational assumptions [KS21], and
build on our techniques to construct significantly improved extractors for other classical settings [GSZ21].
Nevertheless, several exciting questions remain, three of which we outline, below.

Adversarial source extractors for fewer good sources Our explicit extractors for adversarial sources can
handle K ≥ N0.01 good sources of min-entropy k ≥ polylog(n), which is a significant improvement to
the previous best requirement [KRVZ11] of K ≥ O(

√
N) good sources of min-entropy k ≥ n0.99. Non-

explicitly, however, we know there exist low-error extractors that can handle just K = 2 good sources of
min-entropy k ≥ O(log n).25 Can we come up with explicit constructions that come closer to matching
these existential results? Here, one potential approach could be to construct improved leakage-resilient
extractors.

Unconditional extractors for nontrivial locality In Sections 3.4 and 3.5, we showed that our extractors
can be optimized to handle bad sources that depend on a large number of good sources - as long as there are
not too many sources in total, or very many sources in total. That is, unlike our main extractor for adversarial
sources (Theorem 3.1), our extractors that can handle dependent bad sources only work in certain restricted
settings. It is natural to ask whether it is possible to construct an extractor for adversarial sources of locality
d > 0 that works in any setting (i.e., for any number of sourcesN of any length n). This would be interesting
even for sources of locality d = 1, especially since we know that higher locality sources can be reduced to
sources of locality 1 (Lemma 3.15).

Improved extractors for total-entropy sources Finally, our extractors for adversarial sources combine a
host of new objects from extractor theory and combinatorics in order to extract from very few good sources.
It would be exciting to see whether these new objects and techniques can be exploited to obtain improved
extractors for other settings. One natural setting is the class of total entropy sources. While our adversarial
source extractors immediately yield improved extractors for these sources (Section 3.6.1), they do so in
black-box manner. Perhaps our techniques can be carefully tailored to total-entropy sources (in a white-box
manner) to achieve even better extractors for this classical model.

25This can be achieved by exploiting an optimal (non-explicit) two-source extractor, as described in Section 3.3.1.

71

72

Chapter 4

Leakage-resilient extractors

In the previous chapter, we initiated a study of extractors for adversarial sources, a new class of objects
which can be viewed as robust extractors for independent sources. In this chapter, we study a differ-
ent flavor of robust extractors for independent sources, which we call leakage-resilient extractors (LREs).
Unlike extractors for adversarial sources, LREs once again require that each of the n-bit input sources
X1,X2, . . . ,XN contain some min-entropy. Instead, their robustness comes from the following, equally
powerful guarantee: while classical independent source extractors only need to extract uniform bits from
X1,X2, . . . ,XN , an LRE must extract uniform bits that remain uniform, even conditioned on the output of
multiple leakage functions called over the input sources.

In this chapter, we construct explicit LREs that dramatically improve the previous state-of-the-art. Prior
to our work, the best LREs required each input source to have min-entropy k ≥ 0.99n, even if each leakage
function acts on just p = 2 input sources. Recently, Kumar, Meka, and Sahai [KMS19] posed the open
problem of reducing the entropy requirement to k ≥ 0.01n. In our work, we construct LREs that resolve
this open problem, and in fact handle exponentially less min-entropy k ≥ polylog(n). Furthermore, the bits
produced by our LREs remain uniform even against leakage functions that depend on up to p = N − 2 of
the input sources.

LREs were originally inspired by applications in communication complexity, cryptography, and pseudo-
randomness, and our constructions have important consequences in each of these areas. In communication
complexity, we obtain strong average-case lower bounds against a rich spectrum of multiparty communi-
cation protocols that interpolate between the well-studied number-in-hand (NIH) and number-on-forehead
protocols. One of our lower bounds (against a slightly weaker definition of NOF protocols) is strong enough
that, if proven in the standard NOF setting, would yield breakthrough circuit lower bounds. In cryptography,
our LREs yield leakage-resilient secret sharing schemes that are exponentially better than the previous state-
of-the-art. In pseudorandomness, our LREs act as a critical ingredient in our new extractors for adversarial
sources.

The results presented in this chapter are based on the following joint work:

• [CGG+20] Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, Ashutosh Kumar, Xin Li, Raghu Meka, and David Zuck-
erman. Extractors and secret sharing against bounded collusion protocols. In 61st Annual Symposium on Foundations of
Computer Science (FOCS 2020), pages 1226–1242. IEEE, 2020

73

4.1 Introduction

As we have seen, the independent source model is an extremely well-studied model in randomness extrac-
tion, but it is not entirely robust. In the previous chapter, we explored one way to address this, via extractors
for adversarial sources. In this chapter, we study a different flavor of robust extractors for independent
sources, which we call leakage-resilient extractors.

Definition 4.1 (Leakage-resilient extractor for independent sources). Let F be a family of functions of
the form f : ({0, 1}n)N → {0, 1}µ. A function Ext : ({0, 1}n)N → {0, 1}m is called an F-leakage-
resilient extractor for independent sources of min-entropy k with error ε if the following holds. For any N
independent sources X1,X2, . . . ,XN ∼ {0, 1}n, each with min-entropy at least k, and for any f ∈ F ,

|Ext(X1,X2, . . . ,XN) ◦ f(X1,X2, . . . ,XN)−Um ◦ f(X1,X2, . . . ,XN)| ≤ ε.

In order to digest this definition, we can compare it against classical extractors for independent sources
(Definition 3.1) and extractors for adversarial sources (Definition 3.3). While adversarial source extractors
make the independent source setting more robust by allowing some of the sources to be missing entropy,
leakage-resilient extractors once again require each source to have some min-entropy guarantee. On the
other hand, leakage-resilient extractors offer a new robustness guarantee (that adversarial source extractors
do not): the output of a leakage-resilient extractor must look uniform and remain uniform even conditioned
on some leaked information f ∈ F . As we will see, this simple extension of the classical extractor definition
will ultimately yield powerful applications in cryptography, complexity theory, and more.

To begin our study of leakage-resilient extractors, the first question that clearly demands attention is,
What should we select as our family F of leakage functions? One idea is to consider functions that leak
a few bits of information about each source: that is, where each leakage function f ∈ F is of the form
f(X1,X2, . . . ,XN) = (f1(X1), f2(X2), . . . , fN (XN)). As it turns out, this setting can easily be han-
dled by classical extractors for independent sources.1 A much more interesting question, then, is whether
we can construct leakage-resilient extractors for the setting where each leaked bit fi may act on multiple
sources Xi1 ,Xi2 , . . . ,Xip . Such leaks induce correlations between the original sources, making classical
independent source extractors fail.

In this chapter, we construct leakage-resilient extractors that can successfully handle these challenging
leaks and more. Before we dive into these constructions, we visit the land of communication complexity,
which is home to the original motivation for these leakage-resilient extractors.

Communication complexity

In communication complexity, the goal is to understand the amount of communication required to compute
some Boolean function f : ({0, 1}n)N → {0, 1}. This field was initiated by a seminal paper of Yao [Yao79],
who considered the two-party setting. In this setting, there are N = 2 parties, each holding n bits of input.
Each party can only see the input they are holding, and they must work together to determine the value of f
(by communicating as few bits as possible). The question is, how many bits must be communicated?2

1This follows via a standard application of the min-entropy chain rule (see Chapter 2).
2Note that a trivial protocol would have one party send over their entire input, which the other party can then use (combined

with their own input) to determine the value of f . This trivial protocol requires n bits of communication, and the goal is to design
protocols that require much fewer bits of communication ≪ n (or prove they do not exist). For example, if f is the parity function,
then the first party only needs to send 1 bit of information (the parity of their input) to the second party before the second party
knows the value of f .

74

Since its introduction, communication complexity has blossomed into a central area of complexity the-
ory, with deep connections to many other fields.3 While the two-party setting remains the most classical,
the multiparty setting has received a growing amount of attention over the past few decades. In this more
general setting, there can be an arbitrary number of parties, N , each holding n bits of input. They once
again wish to determine the value of f : ({0, 1}n)N → {0, 1}, communicating as few bits as possible. In
the multiparty setting, however, it is less clear how the parties will work together to do so.4 Historically, two
different models have been studied: (1) number-in-hand protocols, and (2) number-on-forehead protocols.

Number-in-hand protocols In a number-in-hand (NIH) protocol [DF92], each party can only see the n
bits of input in their hand. In order to compute the value of f : ({0, 1}n)N → {0, 1}, the parties have access
to a public blackboard, which they may use to communicate. They take turns writing on the blackboard
(some information about the input they are holding), until every party knows the value of f : ({0, 1}n)N →
{0, 1}. The NIH communication complexity of f , denoted CCNIH(f), is then defined as the number of bits
that must be communicated by any such protocol (in the worst case over all inputs).

Number-on-forehead protocols In a number-on-forehead (NOF) protocol [CFL83], each party can see
all of the input to f except the n bits in their hand (metaphorically, these n bits are actually written on
their forehead). Once again, the parties have access to a public blackboard, which they use to communicate.
Every turn, one party writes on the blackboard (some information about the input they are not holding), until
everyone knows the value of f : ({0, 1}n)N → {0, 1}.5 The NOF communication complexity of f , denoted
CCNOF(f), is then defined analogously to CCNIH(f). Because each party can see much more of the input in
NOF protocols than in NIH protocols, NOF protocols are much more powerful and we always have

CCNOF(f) ≤ CCNIH(f).

Lower bounds and applications Multiparty communication protocols offer an attractive model in which
to pursue lower bounds, for two reasons. First, these protocols are simple enough to reason about combina-
torially: if we write down a Boolean function f : ({0, 1}n)N → {−1, 1} in the cells of a multi-dimensional
matrixMf , we can get lower bounds on CCNIH(f) and CCNOF(f) by upper bounding the discrepancy of cer-
tain well-structured subsets of Mf . Second, these protocols appear to be rich enough to capture seemingly
unrelated models of computation. As a result, NIH lower bounds imply lower bounds against streaming
algorithms [AMS99], while NOF lower bounds imply lower bounds in proof complexity [BPS07] and cir-
cuit complexity [All89, Yao90, HG91, RW93, BT94].6 Lower bounds against these protocols also find great
applicability in settings where hardness is considered “good” (like cryptography) [KMS19].

Bounded collusion protocols Given the beautiful connections above, it is natural to wonder whether NIH
and NOF protocols can be placed into a broader family of protocols, whose exploration might offer even
more insight into these applications and lower bounds. In a recent work, Kumar, Meka, and Sahai introduced
exactly such a family, which they called bounded collusion protocols (BCPs) [KMS19].

Like NIH and NOF protocols, BCPs are multiparty communication protocols that seek to compute a
function f : ({0, 1}n)N → {0, 1} whose input is split among N parties. Each party once again holds n bits

3For an overview of the area, we recommend the excellent textbooks of Kushilevitz, Nisan [KN96], Rao and Yehudayoff [RY20].
4In the two-party setting, the two parties simply take turns sending 1 bit of information about their input to the other party.
5An equivalent way to define NOF protocols is as following: each party can only see the n bits of input in their hand, and every

turn, some N − 1 parties get together to write something on the blackboard, which depends on all of their N − 1 pieces of input.
6For more connections, we refer the reader to the excellent survey of Lee and Shraibman [LS09].

75

of input, and they communicate via a public blackboard. Unlike NIH and NOF protocols, however, BCPs
come equipped with an additional parameter p, known as the collusion bound. In every round of the BCP,
p parties get together to write a bit on the blackboard, using all of the input in their possession. We identify
the BCP with all of the bits written on the blackboard over the course of the protocol, and formally define
them as follows.

Definition 4.2 (Bounded collusion protocol (BCP)). A function g : ({0, 1}n)N → {0, 1}µ is called a
bounded collusion protocol (BCP) with collusion bound p if each output bit yi := g(X1, X2, . . . , XN)i is a
deterministic function of the previous output bits y1, . . . , yi−1 and some p inputs Xi1 , . . . , Xip .7

BCPs define a rich spectrum of communication protocols, which is induced by the collusion bound p
(and gets more powerful as p increases). In fact, NIH and NOF protocols are precisely the endpoints of this
spectrum: at p = 1 and p = N − 1, respectively. It is therefore natural to ask about the communication
complexity of a function f : ({0, 1}n)N → {0, 1} with respect to BCPs (of collusion bound p), which we
can simply define as the length µ of the shortest BCP (of collusion bound p) that computes f .8 If we denote
this quantity as CCp(f), we get a vivid illustration of the spectrum cut out by BCPs:

CCNOF(f) = CCN−1(f) ≤ CCN−2(f) ≤ · · · ≤ CC2(f) ≤ CC1(f) = CCNIH(f).

Thus, BCPs offer a natural generalization of the classical NIH and NOF models. If we can obtain a
better understanding of BCPs, then we can also obtain a better understanding of these well-studied settings.
This may not only help us make progress on longstanding barriers in these areas, but could also help us build
new connections from communication complexity to other areas of theoretical computer science. Despite
all of this,

BCPs have never before been studied as a first-class object.

Indeed, in the work that originally introduced these protocols [KMS19], BCPs are motivated and studied
from the context of cryptography, and many fundamental questions are left unanswered. In this chapter, we
seek to launch the first systematic study of these objects, and answer several of these key questions. We
provide an overview of these key questions, next.

Key questions

Lower bounds against BCPs Just like any subfield of complexity theory, a central goal in communication
complexity is to obtain explicit lower bounds. In the NIH model, it is relatively straightforward to come up
with an explicit (poly-time computable) function f : ({0, 1}n)N → {0, 1} such that CCNIH(f) ≥ n.9 On
the other hand, getting strong explicit lower bounds against NOF protocols is much more difficult: here, the
best known results are of the form CCNOF(f) ≥ Ω(n/2N) [BNS92]. Given this, it is natural to wonder how
explicit lower bounds against BCPs (and the difficulty of proving them) evolve from the NIH side of the
spectrum to the NOF side of the spectrum. This leads to our first key question:

Question 4.1. Can we get explicit lower bounds against BCPs that exhibit a collusion-complexity tradeoff?

7Note that the indices i1, . . . , ip may depend on y1, . . . , yi−1.
8Formally, we say that a BCP g : ({0, 1}n)N → {0, 1}µ computes f : ({0, 1}n)N → {0, 1} if g(x)µ = f(x) for all x.
9Note that any lower bound in the two-party setting also applies to NIH protocols with N > 2 parties, as increasing the number

of parties in the NIH setting will decrease the fraction of total input held by each party. Thus the lower bound CCNIH(f) ≥ n (and,
in fact, an even lower bound) follows from classical results in the two-party setting [Yao79].

76

It is especially interesting to understand if we can obtain (nontrivial) explicit lower bounds in the setting
N ≫ log n, as no such lower bounds are known for NOF protocols. In fact, overcoming this “logarithmic
barrier” is a longstanding challenge in complexity theory.10 In our first main result (Theorem 4.1), we show
that in the setting N ≫ log n, if we slightly reduce the collusion bound from p = N −1 (NOF protocols) to
p = 0.99N , we can immediately move from the trivial lower bound CCNOF(f) ≥ Ω(1) to extremely strong
lower bounds of the form CCp(f) ≥ nΩ(1). In fact, we show that these lower bounds always apply against
such BCPs with p = 0.99N , regardless of the relationship between N and n.

Leakage-resilient extractors against BCPs If we can successfully answer Question 4.1 and construct
explicit worst-case lower bounds against BCPs, it is natural to ask whether we can strengthen these re-
sults and obtain explicit average-case lower bounds against BCPs. In particular, we would like to explore
whether it is possible to explicitly construct a function f such that every BCP requires a large amount of
communication to compute its value, even on just slightly more than half of all possible inputs.11 As it turns
out, this is precisely the same task as constructing an explicit leakage-resilient extractor (Definition 4.1) for
min-entropy k = n and output length m = 1 against the family F of BCPs.12

Given this extractor-based characterization of average-case lower bounds against BCPs, it is natural to
wonder whether we can also construct leakage-resilient extractors (LREs) against BCPs that work for min-
entropy k ≪ n. This question was asked in the original paper of Kumar, Meka, and Sahai [KMS19], who
introduced these objects (LREs against BCPs) under the name extractors for cylinder intersections. They
posed the following as an open question.

Question 4.2. Can we construct leakage-resilient extractors against BCPs with collusion p = 2, which
work for min-entropy k = 0.01n?

In our second main result (Theorem 4.2), we answer this question in the affirmative, and in fact construct
LREs that work for exponentially less min-entropy k ≥ polylog(n). Furthermore, our LREs can even handle
BCPs with up to p = N−2 collusion, and more generally achieve a “leakage-collusion” tradeoff that mirrors
the complexity-collusion tradeoff in our answer to Question 4.1. These LREs against BCPs (which work for
low entropy) not only act as even stronger average-case lower bounds against BCPs, but also have important
applications in the world of extractors, as well. Indeed, as we have seen, they serve as robust versions of
classical extractors for independent sources (Section 4.1), and have applications in constructing extractors
for adversarial sources (Section 3.3).

Leakage-resilient secret sharing against BCPs For our final main question, we visit the original moti-
vating application considered by Kumar, Meka, and Sahai [KMS19] in their introduction of BCPs: secret
sharing schemes. Secret sharing schemes are a fundamental cryptographic primitive, originally introduced
in the seminal works of Blakley [Bla79] and Shamir [Sha79]. These schemes capture the natural setting
of a central authority who wishes to share some secret (e.g., missile launch codes) among a group of N
somewhat trusted individuals. In the simplest model, the goal is to allocate a portion (or share) of the secret
to each individual so that if they all work together, they can reconstruct the secret, but if any fewer than N

10Indeed, it has been shown that any significant improvements to the best NOF lower bounds would yield a breakthrough in
circuit complexity, by providing new lower bounds against the circuit class ACC0 [Yao90, RW93, BT94].

11Note that there is always a trivial BCP that computes f on at least half of all possible inputs: the BCP that always outputs 0, or
the BCP that always outputs 1.

12This is a straightforward exercise that follows from the definition of statistical distance.

77

of them work together, they cannot recover any information about the secret. These schemes are known as
N -out-of-N secret sharing schemes, and are the most basic building block in this subarea of cryptography.13

Kumar, Meka, and Sahai [KMS19] study a powerful twist on classical secret sharing, known as leakage-
resilient secret sharing (LRSS). LRSS schemes can be viewed as more robust versions of classical secret
sharing schemes, and have recently received a lot of attention [DP07, DDV10, GK18a, GK18b, BDIR21,
ADN+19, SV19, KMS19, NS20, LCG+20].14 In additional to the classical guarantees offered by a tradi-
tional N -out-of-N scheme (i.e., secrecy against some N − 1 parties working together), a leakage-resilient
N -out-of-N scheme further guarantees that the secret will remain hidden even if some amount of informa-
tion is leaked by all of the N parties. Kumar, Meka, and Sahai consider bounded collusion protocols as
their model of leakage, in an effort to generalize and strengthen several previous models in leakage-resilient
secret sharing.

In their work [KMS19], Kumar, Meka, and Sahai successfully construct LRSS schemes against BCPs,
by leveraging tools from communication complexity. Indeed, by applying explicit functions with high
NOF communication complexity, they are able to construct efficient LRSS schemes against BCPs with
collusion p = O(logN).15 However, they are unable to tolerate collusion p = ω(logN), largely due to their
application of NOF lower bounds in a black-box manner. This begs the question of whether stronger explicit
lower bounds, which apply directly to BCPs (i.e., do not come from a black-box application of NOF lower
bounds), can be exploited to overcome this “logarithmic barrier.” As luck has it, we have explicit bounds of
exactly this nature (i.e., in our answer to Question 4.1). This motivates our third and final question.

Question 4.3. Can we use our new explicit lower bounds against BCPs to construct efficient LRSS schemes
against BCPs with collusion p = ω(logN)?

In our third main result (Theorem 4.3), we answer this question in the affirmative, and in fact construct
efficient LRSS schemes that can even handle BCPs with exponentially higher collusion p = 0.99N . With
our three key questions about BCPs in mind, we now proceed to formally state our main theorems.

4.2 Our results

In this chapter, we construct a new flavor of robust extractors for independent sources, which we call
leakage-resilient extractors. As we have seen, LREs are extremely powerful objects, capable of extract-
ing uniform bits that remain uniform, even conditioned on the output of multiple leakage functions. Here,
we consider a leakage model where each leaked bit depends on a bounded number p of the input sources.

In fact, we actually consider an even more general model, known as bounded collusion protocols (BCPs).
As discussed, BCPs are a rich suite of communication protocols that interpolate between the classical NIH
and NOF settings. But despite their natural definition, they have never before been studied as a first-class
object. Thus, we seek to initiate here a systematic study of these well-motivated protocols, by constructing
three key objects related to BCPs - and indeed, LREs against BCPs constitute just one of these constructions.

13A large variety of more general secret sharing schemes have been studied, such as t-out-of-N schemes and schemes for general
access structures (see, e.g., the survey [Bei11]). However, in many settings, classical N -out-of-N schemes can be “compiled” into
these more general schemes by exploiting now-standard machinery from the secret sharing literature.

14More generally, leakage-resilient secret sharing fits into the long line of work on leakage-resilience in cryptography [KR19].
15A secret sharing scheme over N parties is said to be efficient if each party receives a share of length poly(N).

78

Lower bounds against BCPs

In our first main theorem, we establish explicit lower bounds against the entire spectrum of BCPs. These
lower bounds exhibit a collusion-complexity tradeoff, answering Question 4.1.

Theorem 4.1 (Lower bounds against BCPs). There is a universal constant c > 0 such that for all N,n ∈ N
and p ≤ N − 1, there exists an explicit function f : ({0, 1}n)N → {0, 1} with

CCp(f) ≥ c · n
log(N/p)

log(N/p)+1 .

As can be seen, as the collusion bound p decreases, the lower bound in Theorem 4.1 increases. Most
notably, however, even if the setting of BCPs with very high collusion p = 0.99N , we obtain a strong lower
bound of the form CCp(f) ≥ nΩ(1). Previously, the best known result [KMS19] followed immediately from
(black-box) lower bounds against NOF protocols [BNS92], and was of the form CCp(f) ≥ Ω(n/2p).16

Thus, all previous bounds against p = 0.99N collusion were of the form CCp(f) ≥ Ω(n/20.99N) and thus
become trivial when N > 1.1 log n, whereas our bounds remain polynomially large for all settings of N,n.

Leakage-resilient extractors against BCPs

In our second main theorem, we significantly strengthen our explicit lower bounds to average-case lower
bounds, and in fact strengthen these even further to produce leakage-resilient extractors against BCPs for
polylogarithmic entropy. Furthermore, our extractors exhibit a collusion-leakage tradeoff that mirrors the
collusion-complexity tradeoff in our worst-case lower bounds (Theorem 4.1). We record our result below,
which answers Question 4.2 and resolves an open problem of Kumar, Meka, and Sahai [KMS19].

Theorem 4.2 (Leakage-resilient extractors against BCPs). There exist universal constants C, γ > 0 such
that for all N,n, p ∈ N with N ≥ 3 and p ≤ N − 2, the following holds. There exists an explicit extractor
Ext : ({0, 1}n)N → {0, 1}m for independent sources with min-entropy k ≥ logC n, which is leakage-
resilient against BCPs of collusion p and length µ, and has output length m ≥ µ and error ε = 2−µ,
where

µ := k
γ log(N/p)
log(N/p)+1 .

Notably, Theorem 4.2 provides an explicit extractor for k ≥ polylog(n) entropy that can handle µ =
kΩ(1) bits of leakage from BCPs with collusion p = 0.99N . This is an exponential improvement over the
previous best result [BNS92, KMS19], which required min-entropy k ≥ 0.99n, even for BCPs of collusion
p = O(1). Our leakage-resilient extractor against BCPs is a powerful new primitive in extractor theory,
and is the strongest object that we construct in this chapter. Indeed, all other results can be viewed as an
application of this construction.

Leakage-resilient secret sharing against BCPs

In our third and final main theorem, we exploit the new tools we have developed thus far to construct
significantly improved leakage-resilient secret sharing schemes, answering Question 4.3.

Theorem 4.3 (Leakage-resilient secret sharing against BCPs). There exists an efficient N -out-of-N secret
sharing scheme that is leakage-resilient against BCPs of collusion p = 0.99N and length µ = poly(N).

16We note that our explicit function in Theorem 4.1 can also achieve this bound, which is slightly better when, e.g., p = O(1).

79

This is an exponential improvement over the previous best result [KMS19], which could only handle
BCPs of collusion p = O(logN). Our new secret sharing schemes crucially rely on our new LREs against
BCPs (Theorem 4.2), which have exponentially low error and can be viewed as strong average-case lower
bounds. Interestingly, though, this application only requires LREs for full min-entropy k = n, while our
LREs can actually tolerate exponentially less min-entropy k ≥ polylog(n). It is therefore natural to ask
whether these low-entropy LREs can help us construct even better secret sharing schemes. In Section 4.5,
we exhibit exactly such a setting, via a new (more general) flavor of secret sharing called seeded secret
sharing.

Organization

We organize this chapter around our new leakage-resilient extractors, as they are the most powerful object
that we construct. In Section 4.3, we construct our new LREs against BCPs, by starting with a simple
(but specific) function that is hard for NOF protocols, and gradually adding features until we arrive at
our full-blown leakage-resilient extractor (Theorem 4.2). Next, in Section 4.4, we show how these new
LREs immediately give explicit lower bounds against the entire spectrum of BCPs (Theorem 4.1). Then, in
Section 4.5, we apply our new LREs to get exponentially stronger leakage-resilient secret sharing schemes
(Theorem 4.3). As a third application of our LREs, we remind the reader in Section 4.6 of the crucial role
they play in the construction of our extractors for adversarial sources (from Chapter 3). Finally, we conclude
with some open problems in Section 4.7.

4.3 The extractor

We are now ready to begin the technical portion of the chapter. In this section, we obtain our leakage-resilient
extractors against BCPs (Theorem 4.2), from which all our other main results will precipitate.

Theorem 4.4 (Leakage-resilient extractors against BCPs - Theorem 4.2, restated). There exist universal
constants C, γ > 0 such that for all N,n, p ∈ N with N ≥ 3 and p ≤ N − 2, the following holds.
There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for independent sources with min-entropy
k ≥ logC n, which is leakage-resilient against BCPs of collusion p and length µ, and has output length
m ≥ µ and error ε = 2−µ, where

µ := k
γ log(N/p)
log(N/p)+1 .

As discussed, the high-level idea is start with a function that is hard for NOF protocols, and gradually
equip it with more features until we arrive at Theorem 4.4. But before we do so, it will be helpful to
introduce a little bit of notation. Towards this end, we let BCP(p, µ) denote the collection of all BCPs of
the form g : ({0, 1}n)N → {0, 1}µ with collusion bound p, as defined by Definition 4.2. Additionally,
we let nBCP(p, µ) contain all functions of the form g : ({0, 1}n)N → {0, 1}µ where each output bit
yi := g(X1, X2, . . . , XN)i is a deterministic function of some p inputs Xi1 , . . . , Xip and notably does
not depend on the previous output bits y1, . . . , yi−1. In other words, nBCP(p, µ) contains the class of non-
adaptive bounded collusion protocols. Finally, we let NOF(p, µ) and nNOF(p, µ) refer to the corresponding
classes of number-on-forehead protocols. With these definitions in place, we’re ready to get started.

80

4.3.1 The NOF-hard function

The NOF-hard function that will form the foundation of our leakage-resilient extractors is the finite field
multiplication function FFMN : ({0, 1}n)N → {0, 1}. This function takes as input N bitstrings of length
n, treats them as elements of F2n , takes their product over this field, interprets the result again as a bitstring
over {0, 1}n, and outputs the first bit. In [FG13], Ford and Gál demonstrate strong average-case lower
bounds against this function, of the form Ω(n/2N). However, as we would ultimately like to output many
bits, we must slightly modify their construction so it can do so (while maintaining some notion of average-
case hardness). Towards this end, we will define the product extractor to be equivalent to the finite field
multiplication function, except that it will output the first m bits instead of just the first bit. More formally,
for m ≤ n, we let σn,m : F2n → F2m denote the function that interprets its input as an element of Fn2 and
projects it onto its first m coordinates, and we define a multi-bit output version of FFMN as follows.

Definition 4.3. For any N,n,m ∈ N with n ≥ m, the product extractor prodExt : ({0, 1}n)N → {0, 1}m
is defined as:

prodExt(x1, x2, . . . , xN) := σn,m(x1 · x2 · · · · · xN),

where the input/output are interpreted as elements of F2n , and the product is taken over this field.

We remark that, using the standard encoding of F2n , it is straightforward to perform all the above
operations in poly(n,N) time (see, e.g., [Vad12]), and thus this is an efficiently computable function. Now,
the main goal of this section is to prove that the product extractor define above is a leakage-resilient extractor
for full min-entropy against non-adaptive number-on-forehead protocols. In other words, in some sense, we
want to show that it is a “multi-output” average-case hard function. In particular we will prove the following.

Lemma 4.1 (The NOF-hard function). There is a universal constant c > 0 such that for all N,n ∈ N
such that N ≥ 2, the product extractor prodExt : ({0, 1}n)N → {0, 1}m from Definition 4.3 is an explicit
leakage-resilient extractor against nNOF(µ) for entropy k = n and leakage µ = ξ, output length m ≥ ξ,
and error ε = 2−ξ, where

ξ = cn/2N .

A natural to prove this result might simply apply the correlation bounds of Ford and Gál in a black-box
manner. However, this is not possible, since their correlation bounds correspond to just the first bit produced
by the finite field multiplication function. Instead, we will need to dig into their proof a little bit. Towards
this end, we must first give a brief reminder that a homomorphism between groups (G,+) and (H, ·) is just
a function ϕ : G → H such that ϕ(u + v) = ϕ(u) · ϕ(v) for all u, v ∈ G. Then, a character of G is just
defined as a homomorphism into the (multiplicative group of the) complex numbers, namely ψ : G→ C×.
Finally, we say that ψ is nontrivial if it is not the constant 1. Now, the reason why characters are useful is
because if you have a random variable X ∼ G, and the expectation of ψ(X) is small (in absolute value)
for every nontrivial character, then it follows that X is close to uniform. Such a claim is known as an XOR
Lemma, and we record such a result from Rao, below.

Lemma 4.2 (XOR Lemma [Rao07]). Let X be a random variable over a finite abelian group, G. Then if
U is the uniform random variable over G and Ψ is the collection of all nontrivial characters ψ : G→ C×,

|X−U| ≤
√
|G| ·max

ψ∈Ψ
|E[ψ(X)]|.

Given this XOR lemma, it is actually easy to extend the result of Ford and Gál to an extractor that outputs
multiple bits. The reason for this is because they actually proved a bound on the appropriate expectations
(also referred to as character sums) in their paper! In particular, they showed the following.

81

Lemma 4.3 ([FG13, Theorems 4.7 and 4.11]). For any N,n, µ ∈ N such that N ≥ 2, any Leak :
({0, 1}n)N → {0, 1}µ ∈ nNOF(µ), any y ∈ {0, 1}µ, and any nontrivial character χ : F2n → C×,∣∣∣∣∣∣

∑
x∈({0,1}n)N :Leak(x)=y

χ(x1 · x2 · · · · · xN)

∣∣∣∣∣∣ ≤ 2Nn+1−n/2N−1
.

By combining this character sum with Rao’s XOR lemma, it is straightforward to obtain Lemma 4.1.

Proof of Lemma 4.1. We must show that there is some ξ = Ω(n/2N) such that for all N,n ∈ N such that
N ≥ 2, and any Leak ∈ nNOF(µ) with µ ≤ ξ,

∆ := |prodExt(UNn) ◦ Leak(UNn)−Um ◦ Leak(UNn)| ≤ 2−ξ.

We start by observing that

∆ = ELeak(UNn)[|prodExt(UNn)−Um|]

=
∑
y

Pr[Leak(UNn) = y] · |prodExt(UNn | Leak(UNn) = y)−Um|

≤ 2µ max
y∈{0,1}µ

Pr[Leak(UNn) = y] · |prodExt(UNn | Leak(UNn) = y)−Um|,

where y runs over {0, 1}µ. Next, we can applying Lemma 4.2 to upper bound the above by

2µmax
y,ψ

Pr[Leak(UNn = y)] · |E[ψ(prodExt(UNn | Leak(UNn) = y))]| · 2m/2,

where ψ runs over all nontrivial characters of the additive group F2m . Plugging in the definition of this
expectation, we get:

2µ+m/2max
y,ψ

Pr[Leak(UNn) = y] ·

∣∣∣∣∣∣
∑

x∈({0,1}n)N :Leak(x)=y

Pr[UNn = x]

Pr[Leak(UNn) = y]
· ψ(prodExt(x))

∣∣∣∣∣∣ ,
which clearly equals

2µ+m/2−Nn ·max
y,ψ

∣∣∣∣∣∣
∑

x∈({0,1}n)N :Leak(x)=y

ψ(prodExt(x))

∣∣∣∣∣∣ .
Plugging in the definition of prodExt, we get:

2µ+m/2−Nn ·max
y,ψ

∣∣∣∣∣∣
∑

x∈({0,1}n)N :Leak(x)=y

ψ(σn,m(x1 · x2 · · · ·xN))

∣∣∣∣∣∣ .
It is straightforward to show that σn,m, as defined earlier, is a surjective homomorphism between the additive
groups F2n ,F2m . Thus, for any nontrivial character ψ : F2m → C×, the composition ψ(σn,m) : F2n → C×
is a nontrivial character of the additive group F2n . Thus, we can upper bound the above quantity by

2µ+m/2−Nn ·max
y,χ

∣∣∣∣∣∣
∑

x∈({0,1}n)N :Leak(x)=y

χ(x1 · x2 · · · ·xN)

∣∣∣∣∣∣ ,
82

where χ runs over all nontrivial characters of F2n . We note that the general technique seen above (defining
a surjective homomorphism σn,m in order to use an XOR lemma over a smaller domain in order to incur a
smaller blow-up in error) is borrowed from [Rao07]. Finally, using the character sum from Lemma 4.3, we
can upper bound the above by

2µ+m/2+1−n/2N−1
.

Thus, all that remains is to show 2µ+m/2+1−n/2N−1 ≤ 2−ξ, for some ξ = Ω(n/2N). We recall that µ ≤ ξ
and m ≤ ξ, and note that we may assume ξ ≥ 1, because otherwise prodExt has no output and is trivially a
leakage-resilient extractor. Thus, the above bound indeed holds for, say, ξ = 0.5n/2N , as desired.

4.3.2 Handling more leakage under less collusion via basic combinatorics

Next, we show that without any further modifications, prodExt can handle leakage from BCPs across a very
general range of parameters, and furthermore achieve a nontrivial tradeoff between leakage (complexity)
and collusion. In particular, we prove the following lemma, and note that we optimize to pick a good setting
for t in Section 4.3.4.

Lemma 4.4. There exists a universal constant c > 0 such that the following holds. For all sufficiently large
N,n ∈ N and any t, p ∈ N such that t ≤ N and p ≤ N − 1, the product extractor prodExt : ({0, 1}n)N →
{0, 1}m from Definition 4.3 is an explicit leakage-resilient extractor against nBCP(p, µ) for entropy k = n
and leakage µ < min{ξ,

(
N
t

)
/
(
p
t

)
}, with output length m ≥ ξ and error ε = 2t−ξ, where ξ = cn/2t.

Proof. We must show that for N independent uniform sources X = (X1, . . . ,XN) and any Leak ∈
nBCP(p, µ) with µ < ξ and µ

(
p
t

)
<
(
N
t

)
,

|prodExt(X) ◦ Leak(X)−Um ◦ Leak(X)| ≤ ε,

where ε = 2−ξ. For brevity, we let Z1 := prodExt(X) ◦ Leak(X) and Z2 := Um ◦ Leak(X) and show
|Z1 − Z2| ≤ ε. By the definition of BCPs, there must exist some S1, . . . , Sµ ⊆ [N], each of size p, and
some functions g1, . . . , gµ : ({0, 1}n)p → {0, 1} such that Leak(X) = (g1(XS1), . . . , gµ(XSµ)). Thus:

Z1 := prodExt(X) ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ),

Z2 := Um ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ).

The goal now is to perform fixings so as to reduce the analysis to let us apply Lemma 4.1 over t sources.
We proceed as follows. First, notice that each of the µ subsets Si has size p, and can therefore hold at most(
p
t

)
distinct subsets of size t. Thus, since we are told µ

(
p
t

)
<
(
N
t

)
, there must be some good G ∈

(
[N]
t

)
where G ̸⊆ Si,∀i ∈ [µ]. Without loss of generality, we may assume G = [t] (any other case uses almost
exactly the same ideas that follow, but the notation gets a little cumbersome). We let G = [N] \ G, and by
definition of statistical distance, we know that |Z1−Z2| ≤ |Z1 ◦XG−Z2 ◦XG|. This means there is some
fixed X∗ ∈ ({0, 1}n)N−t such that

|Z1 − Z2| ≤ |(Z1 | XG = X∗)− (Z2 | XG = X∗)|.

Now, to see that this quantity is bounded above by ε, we just have to carefully rewrite the random variables.
First, we note that it is safe to assume that X∗i ̸= 0⃗, for all i ∈ [N − t], at the expense of incurring a factor
of 2t in the error - this is because we can in fact preprocess the input to redirect zeroes to ones before calling
prodExt; this decreases the entropy of each source by 1 bit, and we will see (in Lemma 4.5) that we can

83

handle such a situation at the expense of blowing up the error by an exponential factor in the number of
sources placed into the final prodExt call (which, here, is t sources). Let us now examine the conditioned
versions of Z1 and Z2.

We start by observing that (prodExt(X) | XG = X∗) = σn,m(X1 · · · · · Xt · X∗1 · · · · · X∗N−t) =
prodExt(X1,X2, . . . ,Xt−1,Xt · π), where π = X∗1 · · · · · X∗N−t is some fixed nonzero value in F2n .
Furthermore, for any i ∈ [µ], observe that (gi(XSi) | XG = X∗) becomes the function g′i(XSi∩G), which
is the restriction of gi obtained by fixing the variables Xi, i ∈ Si ∩G according to X∗. By definition of G,
we know G ̸⊆ Si, and thus if we define S′i := Si ∩G, we know S′i ⊊ G, and furthermore (gi(XSi) | XG =
X∗) = g′i(XS′

i
). Thus we have:

(Z1 | XG = X∗) = prodExt(X1, . . . ,Xt · π) ◦ g′1(XS′
1
) ◦ · · · ◦ g′µ(XS′

µ
), and

(Z2 | XG = X∗) = Um ◦ g′1(XS′
1
) ◦ · · · ◦ g′µ(XS′

µ
).

Suppose now that we define Yi, i ∈ [t] as Yi := Xi when i ∈ [t− 1], and Yi := Xt · π when i = t. Then,
for each i ∈ [µ], we define g′′i to be identical to g′i, except for the fact that if g′i receives Xt as an input - say,
as its jth argument - then g′′i multiplies its jth input by the inverse of π (in F×2n) before passing all its input
into g′i, and returning the result. By construction, such a function guarantees g′′i (YS′

i
) = g′i(XS′

i
). And thus,

we see that we can write:

(Z1 | XG = X∗) = prodExt(Y1, . . . ,Yt) ◦ g′′1(YS′
1
) ◦ · · · ◦ g′′µ(YS′

µ
), and

(Z2 | XG = X∗) = Um ◦ g′′1(YS′
1
) ◦ · · · ◦ g′′µ(YS′

µ
).

Since Yt is just a permutation of Xt, it must have the same entropy, and furthermore note that each g′′i acts
as non-adaptive NOF leakage on Y1, . . . ,Yt, since S′i ⊊ [t]. Thus we can use Lemma 4.1 to bound the
difference |(Z1 | XG = X∗)− (Z2 | XG = X∗)| as desired, completing the proof.

4.3.3 Dropping the entropy requirement via two-source condensers and leakage lifting

In this section, we will show how to improve the entropy requirement of prodExt from k = n all the way
to k = polylogn. The first step we take in this direction is a modest one: we show that without any further
modificiations, prodExt will still work if its inputs are missing just a little entropy. More generally, we prove
the following result:

Lemma 4.5. Let Ext : ({0, 1}n)N → {0, 1}m be a leakage-resilient extractor against nNOF(µ) for entropy
k = n and error ε. Then for any 0 < k ≤ n, Ext is also a leakage-resilient extractor against nNOF(µ− 2)
for entropy k and error ε · 2N(n−k).

Proof. Given N independent (n, k) sources X = (X1,X2, . . . ,XN) and any Leak ∈ nNOF(µ − 2), we
wish to upper bound the quantity

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)|. (4.1)

We may assume that each source Xi is flat; i.e., uniform over some Ti ⊆ {0, 1}n of size 2k. The main idea
of this proof is to treat the missing entropy as leakage on uniform sources, by defining a function belonging
to nNOF(2) that identifies the support of (X1, . . . ,XN). In particular, we define the indicator function
id : ({0, 1}n)N → {0, 1}2 as the map (x1, . . . , xN) 7→ (y1, y2), where y1 = 1 if and only if xi ∈ Ti, for
all i ∈ [N − 1], and y2 = 1 if and only if xN ∈ TN . Furthermore, we define 1⃗ := (1, 1). Given these

84

definitions, it is straightforward to verify that id(x) = 1⃗ if and only if x ∈ T1 × · · · × TN , and that id ∈
nNOF(2). Thus, if we define a function Leak′ : ({0, 1}n)N → {0, 1}µ that maps x 7→ (Leak(x), id(x)),
then Leak′ ∈ nNOF(µ), and we may use it to upper bound Equation (4.1):

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)|
= |Ext(UNn | id(UNn) = 1⃗) ◦ Leak(UNn | id(UNn) = 1⃗)

−Um ◦ Leak(UNn | id(UNn) = 1⃗)|
≤ |Ext(UNn) ◦ Leak(UNn) ◦ id(UNn)

−Um ◦ Leak(UNn) ◦ id(UNn)|/Pr[id(UNn) = 1⃗]

≤ ε · 2N(n−k),

where the first inequality is a Markov-type inequality, and the second follows from the hypothesis.

Given the above, the key object we need in order to drop the entropy requirement of our extractor all the
way down to k ≥ polylog(n) is a low-error strong two-source condenser. Ben-Aroya, Cohen, Doron and
Ta-Shma [BCDT19] recently constructed such objects with excellent parameters; most relevant to us here
will be the following specialization of one of their more general constructions:

Theorem 4.5 ([BCDT19]). There exist universal constants C > 0 and γ := 1/C such that for every
n, k,m ∈ N and ε > 0 satisfying k ≥ logC n and kγ ≥ m and ε ≥ 2−k

γ/2
, there exists an explicit function

2Cond : {0, 1}n × {0, 1}n → {0, 1}m such that for any two independent (n, k) sources X1,X2, with
probability 1− ε over x2 ∼ X2, the output has min-entropy H∞(2Cond(X1, x2)) ≥ m−

√
m.

With this condenser in hand, we’re ready to define our final, low-entropy, version of the product-extractor:

Definition 4.4. For a sufficiently large constant C ≥ 1 and any N,n, k,m0,m ∈ N satisfying k ≥ logC n
and k1/C ≥ m0 ≥ m, let 2Cond : {0, 1}n × {0, 1}n → {0, 1}m0 be the condenser for (n, k) sources from
Theorem 4.5, and let prodExt({0, 1}m0)N−1 → {0, 1}m be the product extractor from Definition 4.3. We
define the low entropy product extractor, leProdExt : ({0, 1}n)N → {0, 1}m, as

leProdExt(x1, x2, . . . , xN) := prodExt((2Cond(xi, xN))i∈[N−1]).

In particular, the low-entropy product extractor simply takes its input and uses one of the sources as
a common seed to a two-source condenser call on every other source. We now prove the main lemma of
the section, which proves that leProdExt can in fact handle low-entropy, while simultaneously achieving a
leakage-collusion tradeoff similar to Lemma 4.4. We remark again here that we will optimize to pick a good
setting for t in Section 4.3.4.

Lemma 4.6. There exist universal constants C, γ > 0 such that the following holds. For all sufficiently
large N,n ∈ N and any t, p ∈ N such that t ≤ N and p ≤ N − 2, the low-entropy product extractor
leProdExt : ({0, 1}n)N → {0, 1}m from Definition 4.4 is an explicit leakage-resilient extractor against
nBCP(p, µ) for entropy k ≥ logC n and leakage µ < min{ξ,

(
N−1
t

)
/
(
p
t

)
}, with output length m ≥ ξ and

error ε = 2−ξ, where
ξ = kγ/2t.

Proof. We must show that for N independent (n, k) sources X = (X1, . . . ,XN), and any Leak ∈
nBCP(p, µ) with Leak ∈ nBCP(p, µ) with µ < ξ and µ

(
p
t

)
<
(
N−1
t

)
,

|leProdExt(X) ◦ Leak(X)−Um ◦ Leak(X)| ≤ ε,

85

where ε = 2−ξ. For brevity, we let Z1 := leProdExt(X) ◦ Leak(X) and Z2 := Um ◦ Leak(X) and show
|Z1 − Z2| ≤ ε. By definition of BCPs, there must exist some S1, . . . , Sµ ⊆ [N], each of size p, and
some functions g1, . . . , gµ : ({0, 1}n)p → {0, 1} such that Leak(X) = (g1(XS1), . . . , gµ(XSµ)). Thus,
substituting in the definition of leProdExt, we have

Z1 := prodExt((2Cond(Xi,XN))i∈[N−1]) ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ), and

Z2 := Um ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ).

We remark that any parameters in the construction itself (like condenser output length, condenser error,
product extractor output length, etc.) will be set at the end so that everything works out.

The goal now is to perform fixings to reduce the analysis to the analysis in Lemma 4.4. We proceed as
follows. First, notice that each of the µ subsets Si has size p, and can therefore hold at most

(
p
t

)
distinct

subsets of size t. Thus, since we are told µ
(
p
t

)
<
(
N−1
t

)
, there must be some good G ∈

(
[N−1]
t

)
where

G ̸⊆ Si, ∀i ∈ [µ]. Like in the proof to Lemma 4.4, we will assume, without loss of generality, that G = [t].
Now, we let ε1 be the error of 2Cond, meaning that with probability 1 − ε1 over xN ∼ XN ,

2Cond(Xi, xN) has entropy at least m0 −
√
m0, for any single i ∈ [N − 1]. Thus, by a union bound, with

probability 1 − tε1 over xN ∼ XN , every random variable in {2Cond(Xi, xN) : i ∈ G} has entropy at
least m0 −

√
m0. In other words, there is always some X∗N such that the following is true:

|Z1 − Z2| ≤ |Z1 ◦XN − Z2 ◦XN |
≤ tε1 + |(Z1 | XN = X∗N)− (Z2 | XN = X∗N)|,

where 2Cond(Xi, X
∗
N) has entropy at least m0 −

√
m0, for each i ∈ G. We now define Yi :=

2Cond(Xi, X
∗
N) for each i ∈ [N − 1], and we notice that this collection of random variables are mutually

independent (because they are single-argument deterministic functions of the independent random variables
{Xi}i∈[N−1]). We write Y = Y1 ◦ · · · ◦YN−1. We now fix each Xi, i /∈ G ∪ {N} to some X∗i ∈ {0, 1}n
such that the following holds:

|(Z1 | XN = X∗N)− (Z2 | XN = X∗N)|
≤ |(Z1 | Xi = X∗i ,∀i /∈ G)− (Z2 | Xi = X∗i ,∀i /∈ G)|.

Notice that as a result, each Yi, i /∈ G ∪ {N}, gets fixed to Y ∗i = 2Cond(X∗i , X
∗
N) ∈ {0, 1}m0 , while

each Yi, i ∈ G still has entropy at least m0 −
√
m0, and the collection {Yi : i ∈ G} remains mutually

independent. By following the exact same reasoning as in the proof to Lemma 4.4 about restrictions and the
structure of prodExt, we know that at this point we can write

(Z1 | Xi = X∗i , ∀i /∈ G)
= prodExt(Y1,Y2, . . . ,Yt−1,Yt · π) ◦ g′1(XS1∩G) ◦ · · · ◦ g′µ(XSµ∩G) =: Z′1, and

(Z2 | Xi = X∗i , ∀i /∈ G)
= Um ◦ g′1(XS1∩G) ◦ · · · ◦ g′µ(XSµ∩G) =: Z′2,

where π = Yt+1 · · · · · YN−1, and each g′i is the appropriate restriction of gi induced by the fixings of its
inputs outside G. We are nearly ready to apply the leakage-resilience of prodExt against NOF protocols
and complete the proof. In order to arrive at this situation, we must somehow write each leakage function
g′i as a function of random variables from {Yi : i ∈ G} instead of {Xi : i ∈ G}. It turns out this is not so
difficult to do: we know that for each i ∈ [N − 1], Yi is a deterministic function of Xi. As such, for each

86

i, we can find some randomness Qi and a deterministic function sample such that Qi is independent of Yi,
and sample(Yi,Qi) is identically distributed to Xi: for any fixed y ∼ Yi, the function call sample(y,Qi)
simply uses Qi to sample from (X | Y = y).

As always, we can fix the random variables {Q′i : i ∈ G} to some values {Q∗i } without reducing the
distance between Z′1,Z

′
2:

|Z′1 − Z′1| ≤ |(Z′1 | Qi = Q∗i , ∀i ∈ G)− (Z′2 | Qi = Q∗i ,∀i ∈ G)|.

Furthermore, under this conditioning, we know that each g′i(XS1∩G) obtains the form g′′i (YS1∩G) for some
other deterministic function g′′i , since we saw above that Xi ≈ sample(Yi,Qi), and we have fixed all the
variables {Qi : i ∈ G}. Thus, we may write:

(Z′1 | Qi = Q∗i , ∀i ∈ G)
= prodExt(Y1,Y2, . . . ,Yt−1,Yt · π)

◦ g′′1(YS1∩G) ◦ · · · ◦ g′′µ(YSµ∩G), and

(Z′2 | Qi = Q∗i , ∀i ∈ G)
= Um ◦ g′′1(YS1∩G) ◦ · · · ◦ g′′µ(YSµ∩G)

Using the same trick as in the proof to Lemma 4.4, we may remove π from the equation above, and thus we
just assume now that it is no longer present. Thus, at last, we see that it suffices to upper bound |Z′′1 − Z′′2|,
where

Z′′1 := prodExt(Y1, . . . ,Yt) ◦ g′′1(YS1∩G) ◦ · · · ◦ g′′µ(YSµ∩G), and

Z′′2 := Um ◦ g′′1(YS1∩G) ◦ · · · ◦ g′′µ(YSµ∩G).

These random variables have a very special structure: the collection {Yi : i ∈ [t]} are independent, and
each is an (m0,m0 −

√
m0) source, due to the parameters of 2Cond. Furthermore, we know G ∩ Si ⊊ G,

for all i ∈ [µ], and thus each gi is an NOF-leak on Y = Y1 ◦ · · · ◦Yt.
Thus, to conclude, we combine Lemma 4.1 with Lemma 4.5 to see that prodExt : ({0, 1}m0)t →

{0, 1}m is a leakage-resilient extractor against nNOF(µ2−2) for entropym0−
√
m0, error ε3 = ε2 ·2t

√
m0 ,

and output m = γm0/2
t, where ε2 = 2−m and µ2 = m, for some small universal constant γ > 0.

Furthermore, we know the sources Yi, i ∈ [t] end up with the promised entropy m0 −
√
m0 as long as

k ≥ logC n and k1/C ≥ m0, with error ε1 = 2−k
1/(2C)

, for some universal constant C ≥ 1. Thus, the
condenser and extractor will both work as long as this entropy is guaranteed, and as long as µ < µ2 − 2
(because this means the concatenation of leaks g′′1 , . . . , g

′′
µ is in nNOF(µ2 − 2)). Furthermore, its error will

be
ε = |Z1 − Z2| ≤ tε1 + |Z′′1 − Z′′2| = tε1 + ε3.

Finally, recall that we required µ
(
p
t

)
<
(
N−1
t

)
at the beginning to ensure we could find a good set G. Thus,

there exists some small constant c > 0 and function ξ(k, t) := kc/2t such that as long as k ≥ logC n, and
µ < min{ξ,

(
N−1
t

)
/
(
p
t

)
}, and m ≤ ξ, it holds that |Z1 − Z2| = ε ≤ 2−ξ, which completes the proof.

4.3.4 Adding adaptivity at (almost) no cost

For the final step, all that remains is to add adaptivity back into the equation. We prove the following.

87

Lemma 4.7. Let Ext : ({0, 1}n)N → {0, 1}m be a leakage-resilient extractor against nBCP(p, µ) for
entropy k, with error ε. Then Ext is also a leakage-resilient extractor against BCP(p, µ) for entropy k with
error at most (2µ + 1)

√
ε.

Proof. Consider any function Leak : ({0, 1}n)N → {0, 1}µ in BCP(p, µ). We must show that for any N
independent sources X := (X1, . . . ,XN),

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)| ≤ (2µ + 1)
√
ε. (4.2)

By the averaging principle (Fact 2.2), we know that

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)| = Eτ∼Leak(X)[|(Ext(X) | Leak(X) = τ)−Um|].

We define a set of bad leaks, Bad := {τ ∈ {0, 1}µ : |(Ext(X) | Leak(X) = τ)−Um| ≥
√
ε}, and can use

it to upper bound the above as follows.

Eτ∼Leak(X)[|(Ext(X) | Leak(X) = τ)−Um|] < Pr[Leak(X) ∈ Bad] +
√
ε

≤ |Bad| · max
τ∈Bad

Pr[Leak(X) = τ] +
√
ε

≤ 2µ · max
τ∈Bad

Pr[Leak(X) = τ] +
√
ε.

Thus, it suffices to show that for any τ ∈ Bad, we can upper bound Pr[Leak(X) = τ] by
√
ε. Consider any

τ ∈ Bad. We will define a function that agrees with Leak on exactly the inputs that map to τ , but is much
simpler. In particular, note that by definition of bounded collusion protocols, we know that Leak is defined
in a way such that for every i ∈ [µ], ∃Si : ({0, 1}n)i−1 →

(
[N]
p

)
and Leaki : ({0, 1}n)i−1 × ({0, 1}n)p →

{0, 1} such that for every x1, . . . , xN ∈ {0, 1}n,

Leak(x1, . . . , xN) = (y1, . . . , yµ),

where
yi := Leaki(y1, . . . , yi−1, xSi(y1,...,yi−1)), ∀i ∈ [µ].

Using this definition, we will define a restricted version of this function as follows. Define nLeakτ :
({0, 1}n)N → {0, 1}µ such that for every x1, . . . , xN ∈ {0, 1}n,

nLeakτ (x1, . . . , xN) := (z1, . . . , zµ),

where
zi := Leaki(τ1, . . . , τi−1, xSi(τ1,...,τi−1)),∀i ∈ [µ].

Observe that given this definition, nLeakτ is in the class nBCP(µ, p), and most importantly, the preimage of
τ under nLeakτ and Leak are the same: i.e., for every x ∈ ({0, 1}n)N , nLeakτ (x) = τ ⇐⇒ Leak(x) = τ .
Thus, we know that Pr[Leak(X) = τ] = Pr[nLeakτ (X) = τ], and we know that |(Ext(X) | nLeakτ (X) =
τ) − Um| = |(Ext(X) | Leak(X) = τ) − Um| ≥

√
ε, because we selected τ ∈ Bad. Since nLeakτ ∈

nBCP(µ, p) and Ext is resilient against this class, we know by definition that

|Ext(X) ◦ nLeakτ (X)−Um ◦ nLeakτ (X)|
= Eτ ′∼nLeakτ (X)[|(Ext(X) | nLeakτ (X) = τ ′)−Um|]
≤ ε,

and thus with probability at most
√
ε over sampling τ ′ ∼ nLeakτ (X), |(Ext(X) | nLeakτ (X) = τ ′) −

Um| ≥
√
ε. Thus, because we saw above that |(Ext(X) | nLeakτ (X) = τ) −Um| ≥

√
ε, we know that

Pr[nLeakτ (X) = τ] ≤
√
ε. Thus, it also holds that Pr[Leak(X) = τ] ≤

√
ε, as desired.

88

At last, we have all the ingredients needed to finish the proof of our full-blown leakage-resilient extractor
(Theorem 4.4). It will follow immediately by combining our low-entropy leakage resilient extractor for non-
adaptive BCPs (Lemma 4.6) with the above result showing that adaptivity comes for free (Lemma 4.7), while
fixing t (which we have thus far left undefined) to the appropriate value.

Proof of Theorem 4.4. Simply combine Lemma 4.6 with Lemma 4.7 and set t = log(kγ)
log((N−1)/p)+1 .

4.4 Applications in communication complexity

As we advertised in Section 4.1, a key application of our new leakage-resilient extractors are new explicit
lower bounds against a wide range of multiparty communication protocols. We go into more detail, below.

4.4.1 Explicit lower bounds against multiparty communication protocols

Recall that leakage-resilient extractors against bounded collusion protocols are, in fact, strictly stronger than
lower bounds against them. Indeed, they may be viewed as average-case, multi-output lower bounds against
bounded collusion protocols. However, we find it still useful to record the worst-case, single-output lower
bounds that come about, as these may be easier to compare against classical results in complexity theory.

Theorem 4.6 (Theorem 4.1, repeated). There is a universal constant c > 0 such that for all N,n ∈ N and
p ≤ N − 1, there exists an explicit function f : ({0, 1}n)N → {0, 1} with

CCp(f) ≥ c · n
log(N/p)

log(N/p)+1 .

In particular, the above lower bounds witness a collusion-complexity tradeoff. Most notably, these lower
bounds are of the form nΩ(1) even for p = 0.99N (regardless of the dependence between N,n), which may
be surprising given for certain values of N , no nontrivial lower bounds are known when p is pushed up
to p = N − 1 (i.e., number-on-forehead protocols). Moreover, staring at the above lower bounds, one
might notice that they are actually stronger than what one might obtain by instantiating our leakage-resilient
extractor (Theorem 4.4) with full-entropy sources, due to the fact that they do not have an arbitrarily small
constant attached to the power. Thus, in order to prove these lower bounds, we actually dig back into the
proof presented in the previous section. But have no fear: this result is immediate, simply by combining our
leakage-resilient extractor against non-adaptive BCPs for full min-entropy (Lemma 4.4) with the fact that
adaptivity comes for free (Lemma 4.7), while setting the parameter t appropriately.

Proof of Theorem 4.6. Simply combine Lemma 4.4 with Lemma 4.7 and set t = log(n)
log(N/p)+1 .

4.5 Applications in cryptography

Now, let us turn to an application that takes a bit more work to prove.

4.5.1 Leakage-resilient secret sharing: an exponential improvement

One of the biggest motivating applications of leakage-resilient extractors is that they can provide better
leakage-resilient secret sharing schemes. In this section, we will recall the definition of leakage-resilient
secret sharing schemes, show that our explicit leakage-resilient extractors greatly improve existing results,

89

and introduce a new, natural variant of secret sharing in which our low-entropy leakage-resilient extractor
shines. We start with the standard definition of t-out-of-N secret sharing schemes, as given in [KMS19].

Definition 4.5. Let Share : {0, 1}m → ({0, 1}n)N be a randomized sharing algorithm that maps a secret
of length m into N shares of length n, and let Rec : ({0, 1}n)t → {0, 1}m be a deterministic reconstruction
algorithm that recovers the secret from t shares. The tuple (Share,Rec) is defined as a t-out-of-N secret
sharing scheme if both of the following hold.

1. Perfect correctness: Any t shares can recover the secret. Formally, for any secret Ψ ∈ {0, 1}m and
any S ⊆ [N] of size t,

Pr[Rec(Share(Ψ)S) = Ψ] = 1,

where the randomness is over Share.

2. Perfect secrecy: Fewer than t shares reveal no information about the secret. Formally, for any secrets
Ψ1,Ψ2 ∈ {0, 1}m, and any S ⊆ [N] of size less than t,

|Share(Ψ1)− Share(Ψ2)| = 0.

A leakage-resilient secret sharing scheme is defined to be a t-out-of-N scheme that can also hide the
secret against more powerful adversaries (typically ones that simulate communication protocols). Formally:

Definition 4.6. Let (Share,Rec) be a t-out-of-N secret sharing scheme, with Share : {0, 1}m → ({0, 1}n)N
and Rec : ({0, 1}n)t → {0, 1}m. Given a family of leakage functions F of the form f : ({0, 1}n)N →
{0, 1}µ, we say that (Share,Rec) is leakage-resilient against F with error ε if for any secrets Ψ1,Ψ2 ∈
{0, 1}m, and any f ∈ F ,

|f(Share(Ψ1))− f(Share(Ψ2))| ≤ ε,

where the randomness comes from Share.

We now elucidate the connection between leakage-resilient secret sharing schemes and leakage-resilient
extractors, by showing how the latter can be used to construct the former. This connection and the con-
struction in our proof are borrowed from [KMS19, Lemma 1]. However, we include it for completeness,
because we slightly generalize their result and proof to take advantage of multi-bit output leakage-resilient
extractors, and because our proof can easily be generalized to any leakage class closed under restrictions.

Lemma 4.8. Suppose there exists a leakage-resilient extractor Ext : ({0, 1}n)N → {0, 1}m against
BCP(p, µ) for entropy k = n and error ε. Then there exists an N -out-of-N secret sharing scheme
(Share,Rec) that is leakage-resilient against BCP(p, µ), with error 2m+1 · ε, where Share : {0, 1}m →
({0, 1}n+m)N ,Rec : ({0, 1}n+m)N → {0, 1}m. Furthermore, if Ext runs in poly(N,n) time, then so do
Share and Rec.

Proof. We first construct (Share,Rec) from Ext, and then prove its claimed properties. Let X =
(X1, . . . ,XN) be N uniform random variables over {0, 1}n, and let Y = (Y1, . . . ,YN−1) be N − 1
uniform random variables over {0, 1}m, where all 2N − 1 random variables are independent. We define
Share : {0, 1}m → ({0, 1}n+m)N , for each Ψ ∈ {0, 1}m, as

Share(Ψ) := (X1,Y1) ◦ (X2,Y2) ◦ · · · ◦ (XN−1,YN−1) ◦ (XN ,Ψ⊕ Ext(X)⊕Y1 ⊕ · · · ⊕YN−1)

90

and we define Rec : ({0, 1}n+m)N → {0, 1}m, for each ((X1, Y1), . . . , (XN , YN)) ∈ ({0, 1}n+m)N , where
each Xi ∈ {0, 1}n, Yi ∈ {0, 1}m, as

Rec((X1, Y1), . . . , (XN , YN)) := Ext(X1, . . . , XN)⊕ Y1 ⊕ · · · ⊕ YN−1 ⊕ YN .

We claim that (Share,Rec) is anN -out-of-N secret sharing scheme that is leakage-resilient againstFN,n+m
with error 2m+1 · ε. We must prove the perfect correctness, perfect secrecy, and leakage-resilience of this
scheme. (The efficiency claim is clear.)

Perfect correctness follows easily by definition: for each Ψ ∈ {0, 1}m,

Rec(Share(Ψ)[N]) = Ext(X)⊕Y1 ⊕ · · · ⊕YN−1 ⊕ (Ψ⊕ Ext(X)⊕Y1 ⊕ · · · ⊕YN−1)

= Ψ,

and thus of course Pr[Rec(Share(Ψ))[N] = Ψ] = 1.
Perfect secrecy follows easily as well. For any Ψ1,Ψ2 ∈ {0, 1}m, and any S ⊆ [N] of size |S| < N ,

either S contains N , or not. If N /∈ S, Share(Ψ1)S = (Xi,Yi)i∈S = Share(Ψ2)S , and thus clearly
|Share(Ψ1)−Share(Ψ2)| = 0. If N ∈ S, there must be some α ∈ [N − 1] \S. Thus, there must exist some
fixings {xi ∈ {0, 1}n : i ∈ [N]} and {yi ∈ {0, 1}m : i ∈ [N − 1] \ {α}} such that

|Share(Ψ1)S − Share(Ψ2)S | ≤ |Z1 − Z2|,

where

Z1 := (Share(Ψ1)S | X[N] = (xi)i∈[N],Y[N−1]\{α} = (yi)i∈[N−1]\{α}),

Z2 := (Share(Ψ2)S | X[N] = (xi)i∈[N],Y[N−1]\{α} = (yi)i∈[N−1]\{α}).

Notice, however, that

Z1 = (xi, yi)i∈S\{N} ◦ (xN ,Ψ1 ⊕ Ext(x1, . . . , xN)⊕Yα ⊕i∈[N−1]\{α} yi)
= (xi, yi)i∈S\{N} ◦ (xN ,Um)

= (xi, yi)i∈S\{N} ◦ (xN ,Ψ2 ⊕ Ext(x1, . . . , xN)⊕Yα ⊕i∈[N−1]\{α} yi)
= Z2,

and thus |Share(Ψ1)S − Share(Ψ2)S | = 0.
Finally, to show leakage-resilience, we must prove that for any Ψ1,Ψ2 ∈ {0, 1}m, and any Leak :

({0, 1}n+m)N → {0, 1}µ ∈ FN,n+m, |Leak(Share(Ψ1)) − Leak(Share(Ψ2))| ≤ 2m+1 · ε. Now, we know
that for some Y ∗ ∈ ({0, 1}m)N−1, it holds that |Leak(Share(Ψ1))− Leak(Share(Ψ2))| is at most

|(Leak(Share(Ψ1)) | Y = Y ∗)− (Leak(Share(Ψ2)) | Y = Y ∗)|.

Thus, if we define the fixed quantities ψ1 := Ψ1⊕ Y ∗1 ⊕ · · · ⊕ Y ∗N−1 and ψ2 := Ψ2⊕ Y ∗1 ⊕ · · · ⊕ Y ∗N−1, the
above statistical distance is precisely |Z1 − Z2|, where Zα, ∀α ∈ [2] is defined as follows:

Zα := Leak((X1, Y
∗
1) ◦ (X2, Y

∗
2) ◦ · · · ◦ (XN−1, Y

∗
N−1) ◦ (XN ,Ext(X)⊕ ψα)).

In order to bound |Z1 − Z2|, we will introduce some new random variables. First, we let Q denote a fresh
new random variable that is uniform over {0, 1}m and independent of everything we’ve seen thus far. Then,
we define

Z0 := Leak((X1, Y
∗
1) ◦ (X2, Y

∗
2) ◦ · · · ◦ (XN−1, Y

∗
N−1) ◦ (XN ,Q)).

91

Notice that by the triangle inequality, |Z1 − Z2| ≤ |Z1 − Z0|+ |Z0 − Z2|. Thus, to complete the proof, it
suffices to show |Zα − Z0| ≤ 2m · ε,∀α ∈ [2]. To do so, we first use the data-processing inequality to get

|Zα − Z0| ≤ |Zα ◦ (Ext(X)⊕ ψα)− Z0 ◦Q|.

Suppose now that we define, for each fixed b ∈ {0, 1}m, the random variable

Z(b) := Leak((X1, Y
∗
1) ◦ (X2, Y

∗
2) ◦ · · · ◦ (XN−1, Y

∗
N−1) ◦ (XN , b)).

Then by definition of statistical distance, we have |Zα ◦ (Ext(X)⊕ ψα)− Z0 ◦Q| is

=
1

2

∑
b∈{0,1}m

∑
a∈{0,1}µ

|Pr[Zα ◦ (Ext(X)⊕ ψα) = a ◦ b]− Pr[Z0 ◦Q = a ◦ b]|

=
1

2

∑
b∈{0,1}m

∑
a∈{0,1}µ

|Pr[Z(b) ◦ (Ext(X)⊕ ψα) = a ◦ b]− Pr[Z(b) ◦Q = a ◦ b]|

≤ 2m max
b∈{0,1}m

1

2

∑
a∈{0,1}µ

|Pr[Z(b) ◦ (Ext(X)⊕ ψα) = a ◦ b]− Pr[Z(b) ◦Q = a ◦ b]|

≤ 2m max
b∈{0,1}m

1

2

∑
a∈{0,1}µ
b′∈{0,1}m

|Pr[Z(b) ◦ (Ext(X)⊕ ψα) = a ◦ b′]− Pr[Z(b) ◦Q = a ◦ b′]|

= 2m max
b∈{0,1}m

|Z(b) ◦ (Ext(X)⊕ ψα)− Z(b) ◦Q|

= 2m max
b∈{0,1}m

|Ext(X) ◦ Z(b) −Um ◦ Z(b)|

where the last equality holds by Q = Um. Finally, notice that for each b ∈ {0, 1}m, we may define a
restriction string ϕ(b) ∈ (({0, 1}n ∪ {∗}) × ({0, 1}m ∪ {∗}))N such that ϕ(b)i,1 = ∗, ∀i ∈ [N], and ϕ(b)i,2 =

Y ∗i ,∀i ∈ [N − 1], and ϕ
(b)
N,2 = b, and note that if we define Leak(b) : ({0, 1}n)N → {0, 1}µ as the

restriction of Leak under ϕ(b), then Z(b) = Leak(b)(X). Furthermore, it is easy to show this restriction
Leak(b) ∈ BCP(p, µ). Thus,

|Zα ◦ (Ext(X)⊕ ψα)− Z0 ◦Q| ≤ 2m max
b∈{0,1}m

|Ext(X) ◦ Leak(b)(X)−Um ◦ Leak(b)(X)|

≤ 2m · ε,

where the last inequality follows by the leakage-resilience of Ext.

Using this lemma, we are able to immediately use our leakage-resilient extractors to get much better
leakage-resilient secret sharing schemes in the N -out-of-N setting. In leakage-resilient secret sharing, one
typically wants the share size to be as small as possible. Thus, in the following theorem, one should notice
how the requirement on share size, n, grows as we share larger secrets of size m, require less error ε, and
give the adversary more power, in terms of its collusion bound p and number of rounds µ.

Theorem 4.7 (Theorem 4.3, formal). There exists a universal constant C > 0 and an N -out-of-N secret
sharing scheme (Share,Rec), of the form Share : {0, 1}m → ({0, 1}n)N ,Rec : ({0, 1}n)N → {0, 1}m,

92

that shares secrets of length m into N shares of length n that is leakage-resilient against BCP(p, µ) with
error ε. The shares have length at most

n = C ·
(
m+ 1 + log(1/ε))

log(N/p)+1
log(N/p) + µ

log(N/p)+1
log(N/p)

)
,

and the scheme runs in time poly(N,n).

Proof. By Lemma 4.4, there exists an explicit leakage-resilient extractor Ext : ({0, 1}n0)N → {0, 1}m
against BCP(p, µ) for full entropy with error ε · 2−(m+1) as long as µ < ξ,m ≤ ξ, and ε2−(m+1) ≥ 2−ξ,

where ξ = Ω(n
log(N/p)

log(N/p)+1

0). Rewriting these restrictions, it is easy to show that this all holds if

n0 ≥ O(max{µ
log(N/p)+1
log(N/p) ,m

log(N/p)+1
log(N/p) , (m+ 1 + log(1/ε))

log(N/p)+1
log(N/p) })

= O((m+ 1 + log(1/ε))
log(N/p)+1
log(N/p) + µ

log(N/p)+1
log(N/p)).

Thus by setting n := n0 +m = O(n0) and applying Lemma 4.8, the result is immediate.

In order to put the parameters we can achieve in context, we note that the previous best requirement on
share size n, given by [KMS19], was of the form

n = m(logN)(µ+ log(1/ε)) · 2O(p).

The biggest difference here is that the share size in [KMS19] has an exponential dependency on the collusion
bound, p, while our share size does not. Thus, because a secret sharing scheme is only considered efficient
if share size grows polynomially in N , the maximum collusion that can be handled from the leakage-
resilient schemes in [KMS19] is p = O(logN). Our schemes, however, are able to efficiently handle up to
p = 0.99N parties colluding, and furthermore remove any dependency of n on N in this setting.

Seeded leakage-resilient secret sharing Interestingly, it also seems like there is a natural setting in which
such leakage-resilient secret sharing schemes can take advantage of our low entropy extractors. As discussed
above, the key parameter to optimize in secret sharing is share size, n. Given a secret that is to be distributed
amongst N parties and statistically hidden from any powerful adversary, we would like a scheme that pro-
duces the smallest shares possible. The motivation here is that if a secret is to be shared across multiple
devices, we would like to require these devices to store as little information as possible. However, in such
a setting, there is the assumption that the shares we are distributing are new pieces of information that each
device must commit to its memory. If there was a way to somehow incorporate existing information on
these devices into the secret sharing scheme, and only require each device to commit a very small amount
of new information to store the share, then this seems just as good (modulo some user privacy concerns) as
a secret sharing scheme with very small shares.

We develop this intuition into a new type of leakage-resilient secret sharing (LRSS) called seeded
leakage-resilient secret sharing. In such a scheme, the Share function receives not only the secret that
must be shared, but also some information from each device that will participate. The goal of Share is to
output a small number of bits for each participating device such that when a device appends this new infor-
mation onto their existing information, a secret sharing scheme is formed. In this scheme, a device’s share
becomes the concatenation of their old information with their new information.

If each participating device is storing some old information that is purely random, it is not difficult to
do this job quite efficiently. While this is not a likely scenario, it is likely that a device is already storing

93

bits that have some entropy, perhaps in the form of system log files. We will show that even if each device
has a lot of old information with very low entropy, we can complete this with a very small (in fact, optimal)
amount of new information in order to complete a leakage-resilient secret sharing scheme.

The old information on each device is referred to as a seed, and is represented by an (n, k) source. The
amount of bits of new information that must be appended to each device is referred to as the growth of the
scheme. We fully capture our new setting in the following formalism.

Definition 4.7. Let Share : {0, 1}m × ({0, 1}n)N → ({0, 1}m′
)N be a randomized function, and let Rec :

({0, 1}n+m′
)N → {0, 1}m be a deterministic function. Furthermore, let F be a class of (deterministic)

functions of the form f : ({0, 1}n+m′
)N → {0, 1}µ. We say that (Share,Rec) is a seeded leakage-resilient

secret sharing scheme (S-LRSS) against F for seeds of type (n, k), with growth m′ and error ε, if given any
N (n, k) sources X = (X1, . . . ,XN), the maps (Share+,Rec+), with Share+ : {0, 1}m → ({0, 1}n+m′

)N

and Rec+ : ({0, 1}n+m′
)N → {0, 1}m and defined as

Share+(Ψ) := ((X1, Share(Ψ,X)1), (X2,Share(Ψ,X)2), . . . , (XN ,Share(Ψ,X)N)),

Rec+(Ψ) := Rec(Ψ),

are an N -out-of-N leakage-resilient secret sharing scheme against F with error ε.

By employing our leakage-resilient extractors against bounded collusion protocols for low entropy, we
show that we can effectively move the requirement on share size from standard leakage-resilient secret
sharing schemes to the requirement on old information to be reused in our new schemes. Furthermore, the
old information that is harvested from each device barely has to look random at all. In particular, we can
prove the following result.

Theorem 4.8. There exists some constant universal constant C > 0 and an explicit S-LRSS (Share,Rec), of
the form Share : {0, 1}m× ({0, 1}n)N → ({0, 1}m)N ,Rec : ({0, 1}n+m)N → {0, 1}m, against BCP(p, µ)
for seeds of type (n, k) with growth m, as long as k ≥ polylog(n) and

k ≥ (m+ 1 + log(1/ε))
C· log((N−1)/p)+1

log((N−1)/p) + µ
C· log((N−1)/p)+1

log((N−1)/p) ,

Proof. By Theorem 4.4, there exists an explicit leakage-resilient extractor Ext : ({0, 1}n)N → {0, 1}m
against BCP(p, µ) for entropy k = polylog(n) with error ε · 2−(m+1) as long as µ < ξ,m ≤ ξ, and

ε2−(m+1) ≥ 2−ξ, where ξ = k
Ω(

log((N−1)/p)
log((N−1)/p)+1

). Rewriting these restrictions, it is easy to show that this all
happens if

k ≥ max{µO(
log((N−1)/p)+1
log((N−1)/p)

)
,m

O(
log((N−1)/p)+1
log((N−1)/p)

)
, (m+ 1 + log(1/ε))

O(
log((N−1)/p)+1
log((N−1)/p)

)}

= (m+ 1 + log(1/ε))
O
(

log((N−1)/p)+1
log((N−1)/p)

)
+ µ

O
(

log((N−1)/p)+1
log((N−1)/p)

)
.

Then, given N − 1 independent uniform random variables Y1, . . . ,YN over {0, 1}m, we define Share as

Share(Ψ, X1, . . . , XN) := Y1 ◦Y2 ◦ · · · ◦YN−1 ◦ (Ψ⊕ Ext(X1, . . . , XN)⊕i∈[N−1] Yi),

and we define Rec as

Rec((X1, Y1), . . . , (XN , YN)) := Ext(X1, . . . , XN)⊕i∈[N] Yi.

The result then follows immediately from the Definition 4.7 and the proof of Lemma 4.8.

94

4.6 Applications in pseudorandomness

While the majority of this chapter has focused on leakage-resilient extractors, communication complexity,
and secret sharing, we take a moment to recall a key application of leakage-resilient extractors in this thesis.

4.6.1 Extractors for adversarial sources

In Chapter 3, we constructed new state-of-the-art extractors for adversarial sources. As a reminder, an
(N,K, n, k)-adversarial source is a sequence of N independent sources X1, . . . ,XN such that least K of
them have min-entropy at least k. Such sources can capture unreliable sources from nature, our adversarial
players participating in a protocol to generate a collective coin flip. By exploiting the low-entropy leakage-
resilient extractors we constructed in this chapter (Theorem 4.2), we immediately obtained the following.

Theorem 4.9 (Theorem 3.1, repeated). For any fixed δ > 0, there exist constants C, γ > 0 such that the
following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial
sources with K ≥ CN δ good sources of min-entropy k ≥ logC n, which has output length m ≥ kγ and
error ε = 2−k

γ
.

Interestingly, beyond the new model of seeded leakage-resilient secret sharing presented in the previous
section, this is the only known application of our leakage-resilient extractors that work for low min-entropy.
Indeed, it is an interesting open question to find other applications of this powerful new object.

4.7 Future directions

In this chapter, we constructed a new, robust flavor of extractors for independent sources, known as a
leakage-resilient extractors. Given a sequence of independent sources X1,X2, . . . ,XN , such an extrac-
tor can not only produce a stream of uniformly random bits, but it can ensure that these bits remain uniform,
even conditioned on leaks applied to some subset of the sources. Here, we studied leaks corresponding to
bounded collusion protocols (BCPs), a rich spectrum of communication protocols that interpolate between
the classical number-in-hand and number-on-forehead settings. As a result, our leakage-resilient extractors
immediately yielded explicit lower bounds against this spectrum of protocols, in addition to new leakage-
resilient secret sharing schemes. We believe that leakage-resilient extractors may be a fundamentally new
type of pseudorandom primitive, and we suggest the following two directions.

Leakage-resilient extractors against NOF leakage While our leakage-resilient extractors for N inde-
pendent sources can handle as little as polylogarithmic min-entropy, this is only for BCPs with collusion
bound p < N − 1. In particular, for the setting of number-on-forehead leakage p = N − 1, we do not
give any new constructions, and we still don’t know how to handle min-entropy, say, k = o(n). Given
that such LREs would immediately imply better extractors for adversarial sources (Chapter 3), this seems
like a very interesting direction to pursue. Furthermore, it is not clear how much harder this setting really
is - indeed, perhaps our constructions rely too heavily on black-box tools, and a white-box approach may
actually yield better LREs. More concretely, it would be interesting to see if alternating extraction [DP07]
(a technique that is pre-baked into the two-source condensers we use) can be used to directly construct better
LREs against NOF leakage.

95

Leakage-resilient extractors against other functions While this chapter studies LREs for independent
sources against BCPs, it is natural to define and consider other types of LREs. For example, one might
consider leakage classes F that can depend on all of the input sources X1,X2, . . . ,XN , albeit in a compu-
tationally bounded way. In fact, if one considers leaks of the form Ext(f1(X1), . . . , fN (XN)), where each
fi is a function with no fixed point and Ext is the LRE itself, then we immediately arrive at the definition
of a non-malleable extractor [CG17]. This is a different type of robust independent source extractor, and its
study has blossomed into a beautiful theory with connections to coding theory and beyond. Can a similarly
useful theory be developed around LREs?

96

Chapter 5

Explicit extremal designs

Combinatorial designs are fundamental primitives in the theory of pseudorandomness. Given positive in-
tegers n ≥ r ≥ s, an (n, r, s)-design is simply a set system over n elements, where each set has size r,
and any two sets intersect at < s elements. In the language of hypergraphs, it is an r-uniform hypergraph
over n vertices, with pairwise hyperedge intersections of size < s. While combinatorial designs have en-
joyed many applications in pseudorandomness and beyond, these applications typically require designs that
exhibit some sort of extremal property - that is, some property that is in direct tension with the bounded
intersection property inherent to designs. Unfortunately, such designs can be difficult to construct.

Within pseudorandomness, the most famous applications of designs are in certain (celebrated) con-
structions of pseudorandom generators and seeded extractors. These applications require designs that are
extremal in the sense that they have a large number of edges. Luckily, it is well-known how to efficiently
construct such objects. In Chapter 3, we saw a new application of designs in the construction of extrac-
tors for adversarial sources. Unlike the prior two applications, these constructions require explicit designs
that are extremal in the sense that they have a small independence number. Rödl and Šinajová proved the
existence of such designs in 1994 [RŠ94], but prior to our work, no explicit constructions were known.

In this chapter, we give the first explicit construction of designs with small independence number. For
all constants r ≥ s ∈ N with r even, we explicitly construct (n, r, s)-designs (Gn)n∈N with independence

number α(Gn) ≤ O(n
2(r−s)

r). This matches, up to a square, the non-explicit designs of Rödl and Šinajová,
which are known to be optimal up to constant factors. Our construction is elementary: we take a low-weight
Hamming slice of a high-dimensional linear code, interpret it as a design, and analyze its independence
number using recent bounds from additive combinatorics. This construction provides the last missing piece
required to make our extractors for adversarial sources efficient, and it is an exciting open question to
discover other applications of these new explicit extremal designs in the theory of pseudorandomness.

The results presented in this chapter are based on the following joint work:

• [CG21] Eshan Chattopadhyay and Jesse Goodman. Improved extractors for small-space sources. In 62nd Annual Sympo-
sium on Foundations of Computer Science (FOCS 2021), pages 610–621. IEEE, 2021

97

5.1 Introduction

Part I of this thesis has largely focused on the explicit construction of (robust) extractors for independent
sources. For the final chapter of this part, we turn our attention to the explicit construction of a different
pseudorandom object: combinatorial designs. A combinatorial design is a special type of well-balanced set
system, where each set has the same size, and no two sets intersect at too many points.

Definition 5.1 (Design). An (n, r, s)-design, or (n, r, s)-system, is an r-uniform hypergraph over n vertices,
where any two distinct edges intersect at less than s vertices.

Combinatorial designs have - time and again - popped up as key ingredients in a variety of pseudoran-
dom constructions, and have gradually secured their spot as a fundamental primitive in this field. Perhaps
the most notable application of designs is in the seminal work of Nisan and Wigderson [NW94], where
they are used to construct pseudorandom generators (PRGs). In another landmark paper [Tre01], Trevisan
demonstrated how designs can be used to construct excellent seeded extractors. Raz, Reingold, and Vadhan
[RRV02] strengthened this connection even further, by showing that a slightly weaker notion of designs
can be exploited to construct even better extractors. More recently, Li introduced a new hybrid object that
combines seeded extractors with designs [Li12a], and used these objects to construct robust ultra-robust and
ultra-efficient variants of classical objects in extractor theory [Li12a, CL18].

In all of the applications above (except the last one), the authors require designs that are extremal, in
the sense that they have a very large number of hyperedges. While it is easy to show the existence of
such designs via the probabilistic method, these applications (as always) require designs that are explicit.
Luckily, in this case, it is easy to derandomize the probabilistic construction via the method of conditional
expectations - see, for example [Vad12, Problem 3.2].

In Chapter 3, we gave a new application of designs that are extremal in a different sense: we showed that
designs with small independence number can be used to construct state-of-the-art extractors for adversarial
sources.1 Unlike the first type of extremal designs, however, this second type of extremal designs are highly
nontrivial to construct - even using the probabilistic method.2 Luckily, in 1994, via a clever application of
the Lovász Local Lemma, Rödl and Šinajová successfully showed that a random uniform hypergraph does
indeed have small independence number - proving the existence of these designs for the very first time.

Theorem 5.0 ([RŠ94]). Given any n ≥ r ≥ s ∈ N with r ≥ 2, there exists an (n, r, s)-design G with
independence number

α(G) ≤ Cr,s · n
r−s
r−1 (log n)

1
r−1 ,

where Cr,s = C(r, s) depends only on r, s.

Surprisingly, they also showed that this result is tight up to the term Cr,s. However, while their result
proves the existence of extremal designs, it unfortunately does not provide an explicit way to construct
them - and an explicit construction is needed if one hopes to apply these designs to construct other explicit
objects. Most urgently, our application of these designs towards constructing adversarial source extractors
absolutely requires these designs to be explicit. While a collection of work has emerged that improves on the
result of Rödl and Šinajová [GPR95, EV13, Eus13, KMV14, TL18], all of these still rely on probabilistic
constructions, and instead appear to focus on improving the term Cr,s [EV13, Eus13] or extending the result
to more general types of designs [GPR95, KMV14, TL18]. Thus, to date, there are no known explicit
constructions of designs with small independence number.

1As a reminder, an independent set in a hypergraph G = (V,E) is a subset of vertices S ⊆ V that contains no edge, and the
independence number α of a hypergraph is the size of its largest independent set.

2Moreover, it’s a nice exercise to show extremal designs of the first type are not necessarily extremal designs of the second type.

98

5.2 Our results

In this chapter, we give the first explicit construction of designs with small independence number. This
supplies the last missing ingredient needed to complete the construction of our adversarial source extractors,
and provides the first efficient construction of a fundamental object from extremal combinatorics.

Theorem 5.1 (Explicit designs with small independence number). There exists an algorithm A such that
given any n ≥ r ≥ s ∈ N as input with r an even number, A runs in time polynomial in

(
n
r

)
and outputs an

(n, r, s)-design G with independence number

α(G) ≤ Cr,s · n
2(r−s)

r ,

where Cr,s = C(r, s) depends only on r, s.

For all constants r ≥ s ∈ N where r is even, Theorem 5.1 gives an explicit family of (n, r, s)-designs
(Gn)n∈N with small independence number. The independence number of our explicit designs differs from
the independence number of Rödl and Šinajová’s non-explicit designs (Theorem 5.0, which is optimal up to
constants) by just a square. Like their non-explicit designs, our explicit designs focus on the case where r, s
are constant. However, we also give meaningful results when r, s are not constant, and show that we may
take Cr,s = Cr4 for some universal constant C > 0. It is also easy to extend Theorem 5.1 to work for odd r,
at the expense of a small loss in parameters: indeed, to construct such an (n, r, s)-design G, we can simply
construct an (n, r+1, s)-design G′ using Theorem 5.1 and remove an arbitrary vertex from each edge. The

resulting (n, r, s)-design G will have independence number α(G) ≤ Cr+1,s · n
2(r+1−s)

r+1 .

As discussed, these explicit designs provide the last missing piece for our adversarial source extractors.
More generally, however, we find these designs to be interesting in their own right, and we hope that our
elementary construction (which exploits a new connection between extremal combinatorics and coding the-
ory) provides further insight into them. Looking towards the future, it is exciting to think about where else
these designs might find applications - in pseudorandomness, and beyond.

Organization

We present the explicit construction of our designs in Section 5.3, proving Theorem 5.1. Then, in Sec-
tion 5.4, we provide a refresher on the application of these designs in our extractors for adversarial sources.
Finally, we wrap up with some open problems in Section 5.5.

5.3 The design

In this section, we give our explicit construction of designs with small independence number, and thereby
prove Theorem 5.1. Before we dive into the formal proof, we provide an overview of the construction.

An overview of the construction

In order to construct our (n, r, s)-designs G = (V,E), we start with a linear code Q ⊆ Fn2 of distance
d > 2(r − s), and consider just the vectors Qr ⊆ Q of Hamming weight r. Our design G = (V,E) is
constructed by identifying V with [n], and creating a hyperedge for each x ∈ Qr in the natural way. The
distance of the code and the definition of Qr immediately guarantee that G is an (n, r, s)-design.

99

Now, in order to upper bound the independence number α(G) of our design, we observe that any inde-
pendent set in G corresponds to a subcube A ⊆ Fn2 that has no vector in Qr. Since Q is a linear code, this
means that the subspace A∗ := A ∩ Q also has no vector of Hamming weight r. If our linear code Q had
very high dimension, then even if the subcubeAwas relatively small, we would have found a relatively large
subspace A∗ containing no vector of Hamming weight r. But intuitively, it seems like as the dimension of
a subspace grows large enough, at some point it must be guaranteed to have such a vector. It turns out this
is true, and follows immediately from Sidorenko’s recent bounds [Sid18] on the length of sequences in Fn2
with no subsequence of length r that sums to zero. Thus if Q has large enough dimension, then A cannot
be too large, and thus neither can α(G). All that remains is to explicitly construct (the weight r vectors of)
a high-dimensional linear code Q ⊆ Fn2 with distance d > 2(r − s), which can easily be done using BCH
codes [BRC60, Hoc59].

5.3.1 A simple construction via linear codes and Erdős-Ginzburg-Ziv constants

We now proceed with the full construction of our designs, and our formal proof of Theorem 5.1.

From designs to codes

We start with the simple observation that hypergraphs over n vertices can be identified with subsets of Fn2 . In
particular, notice that any subset T ⊆ Fn2 induces a hypergraph GT = (V,E) by identifying [n] with V , and
identifying each x ∈ T with an edge e ∈ E containing all i such that xi = 1. Using this correspondence,
we can instead focus on constructing special subsets of Fn2 , and thereby leverage the tools of linear algebra
and coding theory. Now, to obtain our designs, we just need to explicit construct a subset T ⊆ Fn2 such that:

1. GT is an (n, r, s)-design, and

2. GT has small independence number.

In order to make sure both of these things happen, we can use the following two facts, which describe
how the above hypergraph properties translate to properties of the corresponding subsets in Fn2 .

Fact 5.1 (The design property). For any subset T ⊆ Fn2 , it holds that GT is an (n, r, s)-design if and only
if: (i) every x ∈ T has ∆(x) = r, and (ii) any two distinct x, y ∈ T have ∆(x, y) > 2(r − s).

Proof. The two conditions are sufficient because (i) guarantees that GT will be r-uniform, and (ii) guaran-
tees that any two edges in GT intersect at < s points. They are both necessary because if (i) does not hold
then GT will not be r-uniform, and if (i) holds but (ii) does not, then some two edges share ≥ s points.

Fact 5.2 (The small independence number property). For any subset T ⊆ Fn2 , the hypergraph GT has
α(GT) < ℓ if and only if every subcube A ⊆ Fn2 of dimension at least ℓ has at least one element in T .

Proof. If α(GT) ≥ ℓ, there is an independent set S ⊆ V = [n] of size at least ℓ, and thus the subcube
A := span({ei}i∈S) of dimension ℓ has no points in T . If there is a subcubeA ⊆ Fn2 of dimension ℓ with no
points in T , the set S ⊆ [n] indexing the standard basis vectors that span A must have size ℓ and constitute
an independent set in GT .

Given the above facts, we can fully translate our task of constructing an (n, r, s)-design G with small
independence number into the equivalent task of constructing a subset T ⊆ Fn2 with the following properties.

100

1. Every element in T has Hamming weight r, and any two distinct elements in T have Hamming
distance > 2(r − s).

2. Every subcube A of dimension > α has an element in T .

In order to construct a set T ⊆ Fn2 with these properties, we use connections to coding theory and zero-
sum problems. Recall that an (n, k, d)-code is a subsetQ ⊆ Fn2 of size 2k such that any two distinct x, y ∈ Q
have Hamming distance ∆(x, y) ≥ d. Thus, if we take any (n, k, d)-code Q ⊆ Fn2 with d > 2(r−s) and let
Qr denote the weight r elements of this code, then Qr satisfies the first property above. In order to endow
Qr with the second property, we need to start with some code Q such that any relatively large subcube A
has some element in Qr. In other words, if we let ∆r denote the set of all weight r vectors in Fn2 , we want

A ∩Qr = A ∩ (Q ∩∆r) = (A ∩Q) ∩∆r ̸= ∅.

Towards this end, the trick here is to start with a linear code Q. Recall that a linear [n, k, d] code Q ⊆ Fn2
is simply an (n, k, d) code that is also a subspace. Given this, the condition (A ∩ Q) ∩∆r ̸= ∅ requested
above becomes much more concrete: since Q is a subspace, A∩Q is also a subspace, and thus we can make
sure (A ∩Q) ∩∆r ̸= ∅ as long as we can show that

• A ∩Q is big enough, and

• Every big enough subspace contains a vector of Hamming weight r.

Thus, to complete the proof, we roughly need to find a big enough linear code Q such that d > 2(r− s),
and we need to show that every big enough subspace contains a vector of Hamming weight r. To make
things a little bit more formal, let Λr(n) denote the dimension of the largest subspace in Fn2 containing no
vector of Hamming weight r. We summarize our discussion above with the following formal lemma.

Lemma 5.1. If Q ⊆ Fn2 is a linear [n, k, d]-code with d > 2(r − s), then the hypergraph GQ∩∆r is an
(n, r, s)-design with independence number α that obeys the following inequality:

α ≤ (n− k) + Λr(α)

Proof. It follows immediately from Fact 5.1 that GQ∩∆r is an (n, r, s)-design. By Fact 5.2, there is a
subcube A = span(ei1 , . . . , eiα) ⊆ Fn2 of dimension α that does not intersect Q ∩ ∆r. Thus, if we
define A′ := A ∩ Q, then A′ contains no vector of Hamming weight r, and furthermore it has dimension
dim(A′) = dim(A∩Q) ≥ dim(A)+dim(Q)−n = α+k−n. Notice now that if we define the projection
π : Fn2 → Fα2 as the map (x1, . . . , xn) 7→ (xi1 , . . . , xiα), then the subset π(A′) is still a subspace (albeit
now of Fα2) of dimension dim(π(A′)) ≥ α + k − n containing no vector of Hamming weight r. Thus, by
definition of Λr, it must hold that α+ k − n ≤ dim(π(A′)) ≤ Λr(α).

In what remains, we get good upper bounds on n − k and Λr(α). Namely, we demonstrate an explicit
linear code with very high dimension k (i.e., very low redundancy n−k), and we show that every big enough
subspace contains a vector of Hamming weight r. We start with the latter.

Every big enough subspace contains a vector of Hamming weight r

Getting a good upper bound on Λr(n) is closely related to the theory of zero-sum problems, from the fields of
additive combinatorics and additive number theory. Here, the primary objects of study are the (generalized)

101

Erdős-Ginzburg-Ziv constants of a finite abelian group. If we consider the additive group of Fn2 and any
even number r ≤ n, this constant is defined as the smallest integer sr(n) such that any sequence of sr(n)
(not necessarily distinct) elements of Fn2 contains a subsequence of length r that sums to zero.

As it turns out, the Erdős-Ginzburg-Ziv constant sr(n) is intimately related to Λr(n), the dimension of
largest subspace of Fn2 with no vector of Hamming weight r. This relationship is captured by the following
fact, which has been observed in prior work (e.g., [Sid20]). We include its proof here, for completeness.

Fact 5.3. For every n ≥ r ∈ N where r is even,

sr(n− Λr(n)) > n.

Proof. Let R ⊆ Fn2 be a subspace of dimension k := Λr(n) containing no vector of Hamming weight r.
Let M ∈ F(n−k)×n

2 be a matrix such that R = {x ∈ Fn2 : Mx = 0}. Since R has no vector of weight r, it
follows that no r columns of M sum to zero. Thus the columns of M are a sequence of n values in Fn−k2

containing no subsequence of length r that sums to zero. This means that sr(n− k) > n, as desired.

In other words, the above fact demonstrates that an upper bound on sr(n) immediately gives an upper
bound on Λr(n). With this connection in hand, all we need is a good upper bound on sr(n). In 2018,
Sidorenko provided a very strong bound of this type:

Theorem 5.2 ([Sid18, Theorems 4.1 and 4.4]). There is a universal constant C > 0 such that for every
n, r ∈ N where r is even,

sr(n) ≤ C · r3 · 22n/r.

By plugging this bound into Fact 5.3, we immediately obtain the following.

Corollary 5.1. There is a universal constant C > 0 such that for any n ≥ r ∈ N where r is even, the largest
subspace S ⊆ Fn2 with no vector of Hamming weight r has dimension

Λr(n) ≤ n− (r log n− 3r log r − r logC)/2.

Thus, we have arrived at a nice upper bound on Λr(n), the dimension of the largest subspace of Fn2
with no vector of Hamming weight r, as desired. To summarize the discussion above, this bound is im-
mediate from Sidorenko’s strong bounds on the Erdős-Ginzburg-Ziv constants of the additive group of Fn2
(Theorem 5.2).

A big enough (explicit) linear code

We are now almost ready to complete the construction of our designs. First, by exploiting the bounds on
Λr(n) from above, we are able to prove our main design lemma, which reduces the explicit construction of
designs with small independence number to the explicit construction of a high dimensional linear code.

Lemma 5.2 (A reduction from extremal designs to high-dimensional linear codes). There is a universal
constant C > 0 such that for every n ≥ r ≥ s with r even, if Q ⊆ Fn2 is a linear [n, k, d]-code with
d > 2(r − s), then GQ∩∆r is an (n, r, s)-design with independence number

α(GQ∩∆r) ≤ C · r3 · 22(n−k)/r.

Proof. Simply plug the bound on Λr(α) from Corollary 5.1 into Lemma 5.1.

102

Given the above reduction, all we need to complete the proof of Theorem 5.1 is an explicit construction
of linear codes with very high dimension. 60 years ago, Bose, Ray-Chaudhuri [BRC60], and Hocquenghem
[Hoc59] explicitly constructed codes of exactly this type.3 In particular, they proved the following theorem.

Theorem 5.3 ([BRC60, Hoc59]). For every m, t ∈ N, there exists an [n, k, d]-linear code BCHm,t ⊆ Fn2
with block length n = 2m − 1, dimension k ≥ n −mt, and distance d > 2t. Furthermore, there exists an
Algorithm B that given any m, t ∈ N and x ∈ Fn2 as input, checks if x ∈ BCHm,t in poly(n) time.

By instantiating our reduction (Lemma 5.2) with these codes (Theorem 5.3), we can finally complete
the construction of our designs, and prove Theorem 5.1.

Proof of Theorem 5.1. We start by assuming that n = 2m− 1 for some m ∈ N. Then, we let t = r− s, and
use Theorem 5.3 to define the [n, k, d]-linear codeQ := BCHm,t ⊆ Fn2 , where k ≥ n−mt = n−m(r−s)
and d > 2t = 2(r − s). Algorithm A will simply output the hypergraph GQ∩∆r . By Lemma 5.2, we know
that GQ∩∆r is an (n, r, s)-design with independence number

α(GQ∩∆r) ≤ C · r3 · 22(n−k)/r ≤ C · r3 · 22mt/r = C · r3 · (2m)2(r−s)/r ≤ 2C · r3 · n2(r−s)/r.

Furthermore, note that GQ∩∆r can be constructed in poly(
(
n
r

)
) time if Q ∩ ∆r can be constructed in

poly(
(
n
r

)
) time, and this can be done by simply checking (and appropriately including) whether each of

the
(
n
r

)
elements in ∆r belong to Q, using Algorithm B from Theorem 5.3.

If n is of the form 2m, we can follow the previous procedure to draw hyperedges around the first n− 1
vertices, and then add one more isolated vertex (contained in no edges) at the end to finish the hypergraph.
Clearly we will still have α(GQ∩∆r) ≤ 3C · r3 · n2(r−s)/r.

If n is not of the form 2m − 1 nor 2m, then it can be written as a sum x02
0 + · · ·+ xd2

d over N, where
d = ⌈log n⌉ and each xi ∈ {0, 1}. We can then follow the most recent procedure to construct a graph Gi
over 2i vertices separately for each nonzero xi. The final graphG =

⋃
iGi is clearly still an (n, r, s)-design,

and it has independence number

α(G) =
∑
i:xi=1

α(Gi) ≤
∑

0≤i≤⌈logn⌉

3C · r3 · (2i)2(r−s)/r = 3C · r3
∑

0≤i≤⌈logn⌉

(2i)2(r−s)/r

= 3C · r3 · (2
⌈logn⌉+1)2(r−s)/r − 1

22(r−s)/r − 1
.

It is straightforward to verify that for a large enough universal constant C ′, the above fraction is bounded
above by C ′ · r · n2(r−s)/r, which completes the proof.

On the efficiency of our construction

To conclude this section, it is worth making a brief remark on the efficiency of our construction. As claimed
in Theorem 5.1 and proven above, our (n, r, s)-design G is constructed in time poly(

(
n
r

)
). Should this be

regarded as efficient? Well, if r is a constant, then we construct an n-vertex graph in time poly(n). By
almost all definitions of efficiency, this would indeed qualify. But what if r is superconstant?

In the case of superconstant r, our algorithm is clearly not guaranteed to run in poly(n) time. However,
perhaps this is to be expected: for example, if the algorithm is outputting a superpolynomial number m of
hyperedges, then we certainly should not force it to run in poly(n) time in order to classify it as efficient.
Indeed, a more reasonable way to check whether the algorithm is efficient is to confirm that it runs in
poly(n,m) time. So, when does this happen? We make the following claim.

3See [GB10] for a great exposition of these codes, which are known as BCH codes.

103

Claim 5.1 (Explicitness of Theorem 5.1 for superconstant r). Suppose there is a constant ε > 0 such that
α(G) in Theorem 5.1 is bounded above by O(n1−ε). Then the algorithm A runs in time poly(n,m).

Indeed, the above claim says that as long as Theorem 5.1 gives a nontrivial bound on the independence
number in the first place, then the algorithm will run efficiently. This effectively covers all interesting
regimes of r, s: indeed, the main application of selecting non-constant r, swould be to achieve independence
bounds that are stronger than those achieved by constant r, s - which, in particular, are always of the form
α(G) ≤ O(n1−ε), provided that they are less than n at all. Now, let us turn to prove Claim 5.1.

Proof of Claim 5.1. We use standard bounds on Turán numbers. The Turán number T (n, β, r) is defined as
the fewest number of edges in an r-uniform hypergraph with no independent set of size β, and it is known
[Sid95] that T (n, β, r) ≥

(
n
r

)
/
(
β
r

)
. Thus, the fact that α(G) ≤ O(n1−ε) implies the number of edges m in

the design is at least

T (n,Cn1−ϵ + 1, r) ≥ T (n, n1−ϵ/2, r) ≥
(
n

r

)
/

(
n1−ϵ/2

r

)
≥
(
n

r

)
/

(
n

r

)1−ϵ/4
≥
(
n

r

)ϵ/4
,

where we use the observation that the Turán number is non-increasing in its second argument, the fact that
we can assume n, r are sufficiently large (since otherwise the efficiency claim is trivial), and an application of
Stirling’s formula. Thus, AlgorithmA runs in time

(
n
r

)
= poly(n,m). In fact, since we gave a lower bound

on m based on the independence number, it trivially holds that any algorithm that achieves independence
numbers as small asAmust outputm edges, meaning the runtime ofA is optimal up to constant powers.

5.4 Applications in pseudorandomness

Our designs are built on error-correcting codes, which are inherently pseudorandom objects. In this section,
we briefly review how our explicit designs contribute something back to the field of pseudorandomness.

5.4.1 Extractors for adversarial sources

The main application of our explicit extremal designs is to the construction of extractors for adversar-
ial sources. As a reminder, an (N,K, n, k)-adversarial source is a sequence of N independent sources
X1,X2, . . . ,XN , each over n bits, with the guarantee that at least K of them have min-entropy at least k.
In Chapter 3, we saw how explicit designs with small independence number (in particular, those constructed
in Theorem 5.1) can be used to obtain the following improved extractors for adversarial sources.

Theorem 5.4 (Theorem 3.1, repeated). For any fixed δ > 0, there exist constants C, γ > 0 such that the
following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial
sources with K ≥ CN δ good sources of min-entropy k ≥ logC n, which has output length m ≥ kγ and
error ε = 2−k

γ
.

Moreover, we will see in Chapter 7 that these new extractors for adversarial sources play a big role in
constructing new state-of-the-art extractor for small-space sources. Prior to the construction of our designs,
the previous best extractors for adversarial sources required at least K ≥ N1/2+o(1) of the sources to be
good [CGGL20], and our new designs were a crucial ingredient in bringing this down toK ≥ N δ. For more
details about how this construction works, we refer the reader to Chapter 3.

104

5.5 Future directions

Combinatorial designs are fundamental building blocks in the construction of various pseudorandom objects.
Historically, these applications have exploited designs that are extremal in the sense that they have many
edges. Recently, a new application of designs was discovered in the construction of adversarial source
extractors (Chapter 3). However, this application requires designs that are extremal in a different sense, in
that they have small independence number. In this chapter, we gave explicit constructions of such designs,
which are optimal up to a square (Theorem 5.1). Given that these are brand new pseudorandom objects, a
few natural questions immediately spring to mind.

Improved explicit constructions Even though our explicit construction is optimal up to a square, there
are still certain parameter regimes where our main theorem becomes trivial. In particular, our algorithm is
unable to construct an explicit (n, r, s)-design G = (V,E) with independence number α(G) < n whenever
s < r/2: namely, whenever the hyperedges in the design are forced to have a pairwise intersection of rate
less than half. A recent elegant work of Liu and Mubayi [LM22] successfully construct a handful of designs
in this regime (by exploiting certain types of hypergraph products), but much work still remains to be done.

Other applications of designs with small independence number We find it exciting to have an explicit
construction of a new pseudorandom object, which appears to be of a totally different flavor from those
constructed in the past. It is an interesting open direction to figure out where else these designs might be
useful. Some candidate application domains might be in the fields of property testing or coding theory.
In particular, reviewing our code-based construction of designs, it is easy to verify that such an approach
will always run into a barrier upon trying to construct (n, r, s)-designs with s < r/2. Thus, while the
construction of our designs borrows some results from the field of coding theory, perhaps an improved
construction (that achieves parameters that go beyond what is possible with a coding-theoretic approach)
could instead contribute something back to the field of coding theory. For example, perhaps such designs
could be used to construct new, more robust types of codes.

105

106

Part II

Extractors for algebraic sources

107

Chapter 6

Extractors for affine sources

Beyond the model of independent sources, one of the most classical settings in which to study seedless
extraction is the model of algebraic sources. Instead of assuming access to several independent sources
X1,X2, . . . ,XN , we now assume access to just a single source X that exhibits some sort of algebraic
structure. Here, the most well-studied setting is the model of affine sources, whose origins can be traced
back over three decades.

An affine source X is simply a random variable that is uniform over some affine subspace of Fn2 , and its
min-entropy k corresponds exactly to the dimension of this subspace. Over the years, extractors for affine
sources have emerged as a fundamental primitive in the theory of pseudorandomness, as they have found a
growing number of applications in complexity theory and beyond (in fact, the current state-of-the-art circuit
lower bounds are for affine extractors!). Despite this growing influence, the best-known affine extractors lag
behind the best-known independent-source extractors in terms of their min-entropy requirement.

In this chapter, we construct extractors for affine sources that have a near-optimal min-entropy require-
ment. Prior to our work, the best-known extractors for affine sources required min-entropy k ≥ logC n
for some large constant C. In our work, we show how to extract from affine sources with min-entropy
k ≥ log1+o(1) n, which is close to the optimal requirement of k ≥ O(log n). In order to achieve this
improvement, we take inspiration from an exciting line of work that achieves a similar improvement in
the independent source setting. However, as we have only a single (affine) source to work with, we must
develop a significant amount of new machinery to make everything go through. We exploit two key new
ingredients (both of which can be viewed as powerful twists on the classical seeded extractor): (i) a linear
seeded somewhere extractor for affine sources; and (ii) a correlation breaker for linearly correlated sources.

The results presented in this chapter are based on the following joint work:

• [CGL21] Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. Affine extractors for almost logarithmic entropy. In
62nd Annual Symposium on Foundations of Computer Science (FOCS 2021), pages 622–633. IEEE, 2021

109

6.1 Introduction

When it comes to popular settings in which to study seedless extraction, the independent source model may
very well hold the crown. However, over the past few decades, the algebraic source model has quickly
gained ground, becoming one of the most prominent models in all of extractor theory. In this part of the
thesis, we shift our focus to this important setting. To get started, let’s recall the definition of an extractor.

Definition 6.1 (Extractor). Let X be a family of distributions over {0, 1}n. A function Ext : {0, 1}n →
{0, 1}m is called an extractor for X with error ε if for every X ∈ X ,

|Ext(X)−Um| ≤ ε.

While the independent source model assumes that each source X ∈ X consists of several independent
sources X = (X1,X2, . . . ,XN), the algebraic source model assumes that each source X ∈ X exhibits
some sort of algebraic structure. At first glance, this may appear as an artificial setting in which to study
randomness extraction. However, over the years, extractors for algebraic sources have gradually proven
themselves to be fundamental primitives in the theory of pseudorandomness, demonstrating surprising ap-
plications in cryptography, complexity theory, pseudorandomness, and more.

The origins of algebraic sources can be traced back to the founding papers of extractor theory, via
the model of oblivious bit-fixing sources [Vaz87b, BBR88, CFG+85].1 An oblivious bit-fixing source
X ∼ {0, 1}n consists of n independent bits, but only k of them are guaranteed to be uniform (while the rest
are fixed to constants). Despite this simplicity, oblivious bit-fixing sources have become a classical setting
in seedless extraction, finding applications in distributed computing [CFG+85], exposure-resilient cryptog-
raphy [CDH+00, Dod00, KZ07], and complexity theory [GVW15].2 In light of this, a long line of work has
focused on constructing extractors for this setting [Vaz87b, BBR88, CFG+85, CW89, Fri92, KJS01, BS00,
KZ07, GRS06, Sha08, Rao09b, GVW15, CL18], and we now have near-optimal constructions [Rao09b].

Given the great success of constructing extractors for oblivious bit-fixing sources, it is only natural to ask
if we can achieve similar results for a more general model. Starting in 2001, researchers began to investigate
exactly such a model, known as affine sources [BSHR+01, BKS+10, GR08].3 Intuitively, an affine source X
is a random variable that is uniform over some affine subspace of Fn2 . Formally, they are defined as follows.

Definition 6.2 (Affine source). A source X ∼ Fn2 is called an affine source of dimension k if there exists
some matrix A ∈ Fn×k2 with full column rank and a vector b ∈ Fn2 such that

X = AUk + b,

where Uk is a uniform random variable over Fk2 .

Since their introduction, affine sources have drawn a tremendous amount of interest [BSHR+01,
BKS+10, Bou07, BSK12, Rao09b, Yeh11, Li11b, Sha11a, CT15, Li16, CGL21, CL22, HIV22, Li23],
and have enabled key new developments in both extractor theory [DW12, Vio14, BSRZ15, CG21] and
complexity theory [DK11, FGHK16, LY22]. More generally, the introduction of affine sources ushered in a
new era of randomness extraction from algebraic sources, where several exciting generalizations have been
explored.

1These sources were first suggested by Vazirani [Vaz87b], but were not studied in detail until the works of Bennett, Brassard,
and Robert [BBR88] and Chor, Friedman, Goldreich, Håstad, Rudich, and Smolensky [CFG+85].

2In fact, oblivious bit-fixing sources also have applications in extractor theory itself, as they also capture the oldest model studied
in randomness extraction [vN51]. This was shown in [ACG+22], and we refer the reader to Section 8.4.2 for a proof.

3Other models that generalize oblivious bit-fixing sources have been studied [BL85, LLS89, KKL88, CW89], but affine sources
are the most well-studied one.

110

Generalizations The most natural generalization extends Definition 6.2 to allow the affine source X to
be uniform over an affine subspace of Fn, where F can be any finite field (instead of just F = F2). Several
works have examined this direction [GR08, DG10, BGLZ15, BDL16, GVJZ23], yielding very surprising
results.4 A number of works have also considered pushing this generalization even further, to sources that
are defined via polynomials (instead of just degree 1 maps). Here, two families have been considered.

• Polynomial sources [DGW09, BSG12], where the source X is the the output of some polynomial
p : Fℓ → Fn applied to a uniform random variable U ∼ Fℓ.

• Variety sources [Dvi12, CT15, Rem16, LZ19], where the source X is uniformly distributed over the
solutions to some polynomial p : Fn → Fℓ.

Finally, a very recent paper introduced the family of image of variety sources [GVJZ23], a model which
captures both polynomial sources and variety sources, pushing these generalizations to the extreme.

Our focus In this chapter, we return to the most classical setting in algebraic extraction, and study affine
sources over the field F = F2 (Definition 6.2). Within the world of affine sources, this is considered the
most challenging setting,5 and the only one where the min-entropy of the source X directly corresponds
to the dimension of the underlying subspace. Furthermore, given the natural correspondence between the
vector space Fn2 with the collection of bitstrings {0, 1}n, affine sources over F2 seem to strike a good balance
between the worlds of algebra and computer science - and, indeed, from this balance is born a rich array of
applications. In what follows, we highlight some of these applications, review what is known about affine
extractors, and state the goal of this chapter.

Applications Over the years, affine sources (over F2) have emerged as a unifying model in seedless ex-
traction. Returning to our original motivation, affine sources not only generalize oblivious bit-fixing sources
[Vaz87b, BBR88, CFG+85],6 but can even be applied to extract from some basic variety sources [CT15].
Recently, a deep connection has also been established [DW12, Vio14, CG21] between affine sources and
samplable sources [TV00]. Here, it was shown that extractors for affine sources also work for circuit sources
[DW12, Vio14] and small-space sources [CG21].7 Finally, for the independent source model, a beautiful
paper of Ben-Sasson and Ron-Zewi [BSRZ15] proved (under plausible conjectures in additive combina-
torics) that affine extractors can be used to construct low-error two-source extractors - a result that could
help break longstanding barriers in the field [CG88, Bou05, Lew19].

Needless to say, affine extractors are a valuable currency in the land of seedless extraction. Surprisingly,
however, they also have profound applications in complexity theory. As it turns out, affine extractors not
only yield the best-known lower bounds against various specialized complexity classes [CS16b], but they
also yield the best-known lower bounds against general circuits [DK11, FGHK16, LY22]. This connection
was first discovered by Demenkov and Kulikov [DK11], and exploited a few years later in the breakthrough
work of Find, Golovnev, Hirsch, and Kulikov [FGHK16], which smashed a 30-year-old record in circuit
lower bounds. Today, the current state-of-the-art circuit lower bounds are still for affine extractors [LY22],
and many of the most promising paths forward are based on the explicit construction of their algebraic
cousins (namely, extractors for variety sources) [HR15, GK16, GKW21].

4For large enough fields, it turns out that extraction is possible even from lines (affine sources with dimension k = 1) [GR08]!
5Extractors for affine sources over Fn generally become more difficult to construct as the size of the field F becomes smaller,

with F = F2 representing the most challenging setting.
6This generalization actually played a key role in constructing the best extractors for oblivious bit-fixing sources [Rao09b].
7We discuss this connection in detail in Section 6.4.

111

Prior work For the reasons highlighted above, we direct our focus towards constructing affine extractors
over Fn2 . However, before we review what is known about these objects, we would be remiss to ignore a
beautiful body of work on extracting from affine sources over larger fields.

The large field setting The first affine extractors over large fields Fq were obtained by Gabizon and Raz
[GR08], who showed how to successfully extract from lines, or affine sources of dimension k = 1. Their
extractors required a field of size roughly q = O(n2), and a later work [BGLZ15] reduced this requirement
to q = O(n). Meanwhile, an alternative construction of DeVos and Gabizon [DG10] showed how to reduce
the field size q even further, at the expense of increasing the dimension k of the affine source. Here, they
achieved a tradeoff of the form q = O((n/k)2), while also requiring the field to have large characteristic.
All of the constructions above have relatively high error, which is (at best) of the form ε = q−Ω(1).8 In 2016,
Bourgain, Dvir, and Leeman presented a construction that achieves exponentially small error ε = q−Ω(k),
at the expense of a larger field size of q = nO(log logn). Furthermore, their construction only worked for
“typical” primes q, or rather primes q for which q− 1 doesn’t have too many prime factors. In a subsequent
work [GVJZ23], this restriction was successfully removed.

The small field setting We now turn to affine extractors over F2. As discussed, this is the most challenging
setting in which to construct these objects. Here, it is no longer possible to extract from affine sources
of dimension k = 1, and in fact this task remains impossible even for dimension k = log(n) − O(1)
[CS16b, ABGSD21]. Non-explicitly, on other hand, a standard application of the probabilistic method
shows the existence of affine extractors (over F2) for min-entropy k ≥ O(log n) with extremely low error
ε = 2−Ω(k).9 Explicitly, the best known extractors for affine sources (prior to our work) are as follows.

• The low-error setting: There exist explicit extractors for min-entropy k ≥ O(n/
√
log logn).

For the special case of low-weight affine sources,10 the best extractors require k ≥ polylog(n).

• The high-error setting: There exist explicit extractors for min-entropy k ≥ polylog(n).

Just like with the independent source model, these constructions are the culmination of many years of work.
We briefly review this history, below.

The first explicit affine extractors appeared in 2001 [BSHR+01], when it was shown that the inner prod-
uct (mod 2) function extracts from affine sources of min-entropy k ≥ 0.501n with error ε = 2−Ω(k).11

Several years later, this entropy requirement was significantly improved, when an explicit disperser ap-
peared [BKS+10] that could handle min-entropy k ≥ 0.01n. Following this result, an exciting line of
work by Bourgain [Bou07], Yehudayoff [Yeh11] and Li [Li11b] matched this entropy requirement for low-
error extractors, and in fact constructed explicit affine extractors that could handle even less min-entropy
k ≥ O(n/

√
log logn) with exponentially small error. This remains the best known low-error extractor for

general affine sources, while a fascinating construction of Rao [Rao09b] shows how to reduce the entropy
requirement to k ≥ polylog(n) for the special class of affine sources with a low-weight basis.12

In the high-error regime, significantly more progress has been made. At STOC 2009, Ben-Sasson and
Kopparty [BSK12] constructed an affine disperser for min-entropy k ≥ O(n4/5). This was later improved

8In fact, the field sizes q claimed above must be raised to the power of (roughly) 1 + Ω(1) to actually achieve this error.
9Recall that in the setting F = F2, the dimension of an affine source is equal to its min-entropy.

10A low-weight affine source is uniform over an affine subspace whose basis consists of low (Hamming) weight vectors.
11Suspiciously, recall that this function achieves the same parameters for the independent source model!
12Rao’s extractor handled basis vectors of weight w ≤ k0.01 [Rao09b], which was later optimized to w ≤ k0.99 [DW12, Vio14].

112

by Shaltiel [Sha11a], who constructed a disperser for min-entropy k ≥ 2(logn)
0.9

= no(1). This remained the
best known result for several years, until Li constructed an extractor which could handle dramatically less
min-entropy k ≥ polylog(n) [Li16]. Li’s affine extractor has polynomially small error, and is constructed
by carefully extending a breakthrough result on independent source extractors [CZ19] to the affine setting.

Our goal While Li’s construction [Li16] represents a dramatic improvement in the state-of-the-art, there
is still progress to be made. In particular, with this result in hand, the best known explicit extractor for affine
sources requires min-entropy k ≥ logC n for some large constant C > 0, whereas non-explicitly we know
that it is possible to achieve k ≥ O(log n). Naturally, we would like to find explicit constructions that come
closer to matching this existential bound. The matter becomes more serious if we examine the progress
that has been made on independent source extraction since the breakthrough work of Chattopadhyay and
Zuckerman [CZ19], on which Li’s affine extractor [Li16] is based. Here, a series of exciting work [CS16a,
CL16a, Coh16b, Mek17, BDT19, Coh17, Li17, Li19] has successfully brought the entropy requirement
down from k ≥ logC n to k ≥ log1+o(1) n, whereas no such progress has been made for the affine setting.
All of this begs the question,

Can we construct an affine extractor for min-entropy k ≥ log1+o(1) n?

This is the main question we seek to answer.

6.2 Our results

In this chapter, we answer the main question presented in Section 6.1, and explicitly construct extractors for
affine sources with a near-optimal min-entropy requirement. We prove the following theorem.

Theorem 6.1 (Affine extractors for almost logarithmic entropy). For any constant ε > 0, there exists a
constant C > 0 such that the following holds. There exists an explicit extractor Ext : {0, 1}n → {0, 1} for
affine sources of min-entropy k ≥ C log n · log log n · (log log log n)6, which has error ε.

As discussed, the previous best extractor for affine sources [Li16] required min-entropy k ≥ logC n
for some large constant C > 0, while our new Theorem 6.1 can handle min-entropy k ≥ log1+o(1) n.
This comes close to the optimal entropy requirement of k ≥ O(log n), and virtually matches the recent
improvements that have been made in the independent source setting [CS16a, CL16a, Coh16b, Mek17,
BDT19, Coh17, Li17, Li19]. Our constructions take inspiration from this exciting line of work, but require
a serious amount of new machinery to make everything go through, due to the fact that we are working
with just one (affine) source. The two key new ingredients we construct are (i) a linear seeded somewhere
extractor for affine sources and (ii) a correlation breaker for linearly correlated sources - both of which can
be viewed as a powerful twist on the classical seeded extractor.

Organization

We construct our affine extractor in Section 6.3, where we prove Theorem 6.1. Next, we demonstrate appli-
cations of new extractor in pseudorandomness (Section 6.4) and complexity theory (Section 6.5). Finally,
we conclude with some open problems in Section 6.6.

113

6.3 The extractor

We are now ready to proceed with our extractor construction. In this section, we prove the following.

Theorem 6.2 (Affine extractors for almost logarithmic entropy (Theorem 6.1, restated)). For any constant
ε > 0, there exists a constant C > 0 such that the following holds. There exists an explicit extractor
Ext : {0, 1}n → {0, 1} for affine sources of min-entropy k ≥ C log n · log log n · (log log log n)6, which has
error ε.

To construct this extractor, we build a framework out of several key ingredients, which we present below.

6.3.1 A simple construction via somewhere extractors and correlation breakers

Our framework for extracting for affine sources will follow the breakthrough framework of Chattopadhyay
and Zuckerman for extracting from two sources with polylogarithmic min-entropy [CZ19]. At a very high
level, this framework works as follows.

Creating a table Their general idea was as follows. Given two independent sources X,Y ∼ {0, 1}n,
each with some min-entropy, one can call a strong seeded extractor sExt : {0, 1}n × {0, 1}d → {0, 1} on
X, enumerating over all the seeds, to obtain another source (called a “table”), X′ ∼ {0, 1}2d . Now, by the
property of the strong seeded extractor, one is guaranteed that most X′i are close to uniform. The other bits,
on the other hand, can look like anything. Towards this end, one might intially think to attempt to extract
from X′ using an extractor for non-oblivious bit-fixing (NOBF) sources. Such sources look similar to X′,
in the sense that some of the bits in an NOBF source are guaranteed to be uniform, while the remaining bits
can depend on these in any which way. However, the key difference, of course, is that the uniform bits in an
NOBF are independent, while the uniform bits in X′ can be arbitrarily correlated.

Breaking the correlation To fix this problem, one natural idea is to attempt to use the other source Y to
break the correlation. And indeed, this is exactly what is done: using an object called a correlation breaker,
it is possible to use Y to break the correlations in the uniform rows of X′. So, does this mean that we’re
done? Indeed, if all the uniform bits in X′ actually become uncorrelated, then we can certainly complete the
extraction by applying an off-the-shelf extractor for NOBF sources. The problem, however, is that we can’t
use Y to break the correlation between all the uniform bits in X′. This is because X′ contains 2d bits, which
will be at least poly(n), given that X′ was generated by a seeded extractor. In order to break this amount of
correlation, Y would need to have at least poly(n) bits, which is of course impossible. Even worse, we are
trying to extract from near logarithmic min-entropy, so this is nowhere in the ballpark.

A key idea baked into the framework of Chattopadhyay and Zuckerman [CZ19] is the fact that all the
correlations between the good bits of X′ need not be broken! Indeed, this is due to the fact that if we just
break correlations between t-tuples of good bits in X′, then it will still obtain a fair amount of structure.
Furthermore, Y′ won’t need much more than t bits of randomness to make this happen. So, what does X′

look like now?
The answer is that X′ looks something like a “t-wise independent” NOBF source: i.e., one in which the

good bits are (close to) t-wise independent, while the bad bits can still look like anything. But, can we even
extract from such sources? What if all we have available is a vanilla extractor for NOBF sources? As it turns
out, if the extractor is simple enough - i.e., computable in AC0 - then it will, in fact, extract from such sources!
Indeed, this follows almost immediately from Braverman’s celebrated result that t-wise independence fools
AC0 circuits [Bra08]. Thus, in some sense, the extractor for NOBF sources simply cannot tell that it is in

114

fact looking at a t-wise independent NOBF source, and it will extract anyway. This roughly completes the
framework for extracting from two independent sources with polylogarithmic min-entropy.

Going beyond polylogarithmic min-entropy Here, the need for polylogarithmic min-entropy largely
comes from the fact that AC0 is only fooled by polylogarithmic independence. If one hopes to extract
with near-logarithmic min-entropy, one must find some extractor for NOBF sources that is fooled by less
independence. As it turns out, [Vio14] previously proved that the majority function is exactly such an
extractor, and much of the efforts following [CZ19] have attempted to use such an extractor to achieve near-
logarithmic min-entropy in the two-source setting. One difficult problem that arises, however, is that fact
that while the majority function can work with good bits with less independence than the function from
before, it in fact requires a greater overall number of good bits. Thus, it somehow shifts the hard work
from the correlation breaker, to the original seeded extractor (which now must have very small error). Such
extractors, however, are difficult to construct. To circumvent this, [BDT19] had the great idea that you
don’t actually need a seeded extractor to properly execute the first step. In fact, it is enough to just have
a somewhere seeded extractor, which outputs a couple of results, only one of which is guaranteed to be
good (such objects are much easier to construct). This is because one can simply request for the correlation
breaker to also break the correlation between these few outputs, so we can safely XOR them together, and
the correlation breaker promises that this output will look like it came from a bona fide seeded extractor.

This is a rough outline of the plan that we will follow. However, notably, we only have one (affine) source
to extract from. Thus, this single source will need to play both of the roles of X and Y above. In order to
make this happen, we will need some new equipment.

A formal presentation of the proof

For our formal proof, the first new device we need is a correlation breaker for linearly correlated sources.

Definition 6.3 (Correlation breaker for linearly correlated sources). A function CB : {0, 1}n × {0, 1}d ×
{0, 1}a → {0, 1}m is called a correlation breaker for linearly correlated sources for min-entropy k, seed
length d, advice length a, tampering degree t, and error ε if the following holds.

• Let A,B ∼ {0, 1}n and Y,Y1, . . . ,Yt ∼ {0, 1}d be random variables such that A is independent
of (B,Y,Y1, . . . ,Yt). Furthermore, suppose that A has min-entropy at least k and Y is uniform.

• Define X := A+B.

Then for any pieces of “advice” α, α1, . . . , αt ∈ {0, 1}a with α distinct from the rest,

|CB(X,Y, α) ◦ CB(X,Y1, α1) ◦ · · · ◦ CB(X,Yt, αt)

−Um ◦ CB(X,Y1, α1) ◦ · · · ◦ CB(X,Yt, αt)| ≤ ε.

Indeed, this powerful object will play the role of the (standard) correlation breaker discussed earlier on.
Next, to play the role of the somewhere seeded extractor, we will also need a version of this object that
works well with linearly correlated sources. Such a device is called a linear seeded somewhere extractor.

Definition 6.4 (Linear seeded somewhere extractor). A function ssExt : {0, 1}n×{0, 1}d× [A]→ {0, 1}m
is called a linear seeded somewhere extractor for affine sources of min-entropy k, with seed length d, advice
size A, and error ε if the following holds. For any affine source X ∼ {0, 1}n of min-entropy k,

Pr
y∼Ud

[∄a ∈ A such that ssExt(X, y, a) = Um] ≤ ε,

115

and for every fixed y ∈ {0, 1}d and a ∈ A the function ssExt(·, y, a) : {0, 1}n → {0, 1}m is linear over F2.

Finally, at the very end of our construction, we will once again need an extractor for NOBF sources.
Thus, as a reminder, let us briefly recall their definition (along with the definitions of their relaxations).

Definition 6.5 (Non-oblivious bit-fixing sources). A source X ∼ {0, 1}n is called a q-non-oblivious bit-
fixing (NOBF) source if there exists some set Q ⊆ [n] of size q such that XQ is uniform. If there exists a set
Q ⊆ [n] of size q such that for any S ⊆ Q of size t, XS is uniform, then it is called a (q, t)-NOBF source.
Finally, if XS is only guaranteed to be γ-close to uniform, then it is called a (q, t, γ)-NOBF source.

In general, we will only be able to produce a (q, t, γ)-NOBF source, instead one where the good bits are
truly t-wise independent (i.e., have the property that any t of them look perfectly uniform). However, this
will not be a big problem, as it is known that (q, t, γ)-NOBF sources look like (q, t)-NOBF sources.

Lemma 6.1 (Local-to-global closeness for t-wise independence [AGM03]). Let X ∼ {0, 1}n be a source
such that for any S ⊆ [n] of size t, it holds that XS is γ-close to uniform. Then X is ntγ-close to a t-wise
independent distribution.

Corollary 6.1. Any (q, t, γ)-NOBF source X ∼ {0, 1}n is ntγ-close to a (q, t)-NOBF source X′ ∼ {0, 1}n.

Finally, the last tool we need is the following classical way to working with linearly correlated sources.

Lemma 6.2 (Affine conditioning [Rao09b]). Let X ∼ {0, 1}n be an affine source with min-entropy k, and
let L : {0, 1}n → {0, 1}m be an arbitrary linear function. Then there exist independent affine sources
A,B ∼ {0, 1}n such that X := A+B, and H∞(A) ≥ k −m, and L(A) = 0 with probability 1.

Given all of these ingredients, we present and prove our framework for extracting from affine sources,
before finally instantiating it to yield affine extractors for almost logarithmic min-entropy.

Lemma 6.3 (Affine extractors from three ingredients). Suppose you have the following objects.

• ssExt : {0, 1}n × {0, 1}d × [A]→ {0, 1}m a linear seeded somewhere extractor for affine sources of
min-entropy k1, with seed length d, advice size A, and error ε1.

• CB : {0, 1}n×{0, 1}m×{0, 1}d+logA → {0, 1} a correlation breaker for linearly correlated sources
for min-entropy k2, seed length m, advice length d+ logA, tampering degree tA, and error ε2.

• NOBF : {0, 1}D → {0, 1} an extractor for (ε1D, t)-NOBF sources with error ε3.

Then, consider the function Ext : {0, 1}n → {0, 1} defined as:

Ext(X) := NOBF(⊕α∈[A] CB(X, ssExt(X, 1, α), 1, α),
⊕α∈[A] CB(X, ssExt(X, 2, α), 2, α),
...

⊕α∈[A] CB(X, ssExt(X, D, α), D, α))

Ext is an extractor for affine sources with min-entropy k ≥ max{k1, k2 +mtA} and error ε = ε3 +Dttε2.

116

Proof. For convenience, let us start by defining some random variables. For every s ∈ {0, 1}d and α ∈ [A],
we define Ys,α := ssExt(X, s, α) and Zs,α := CB(X,Ys,α, s, α). Then, for every s ∈ {0, 1}d we define
Rs := ⊕α∈[A]Zs,α. Notice that we can now conveniently write

Ext(X) = NOBF(R1,R2, . . . ,RD).

Let us call (R1,R2, . . . ,RD) the table. We call a row s ∈ [D] good if there is some α ∈ [A] such that the
output of the somewhere seeded extractor Ys,α is uniform, and let us call a row bad otherwise. Since we fed
the somewhere extractor an affine source of min-entropy at least k1, the number of bad rows can be at most
ε1D. Now, take a subset T ⊆ [D] of t good rows. Our next goal is to argue (Rs)s∈T is close to uniform, so
that we can eventually say that the entire table looks close to an NOBF source.

Without loss of generality (just to make notation convenient), let us assume that T = {1, 2, . . . , t} ⊆ D.
We wish to argue that |R1 ◦R2 ◦ · · · ◦Rt −Ut| is small, but let’s start with trying to show

|R1 ◦R2 ◦ · · · ◦Rt −U1 ◦R2 ◦ · · · ◦Rt| (6.1)

is small. This is where our correlation breaker will come in handy. Now, since we are assuming that R1

is a good row, we know one of its components are good. Namely, there is some α ∈ [A] such that Y1,α

is uniform. Without loss of generality (again just for convenient notation), let us assume α = 1 has this
property; namely, that Y1,1 is uniform. Now, using the data-processing inequality and the definition of Rs,
we can upper bound Equation (6.1) by

|Z1,1 ◦ · · · ◦ Z1,A ◦ Z2,1 ◦ · · · ◦ Z2,A ◦ · · · ◦ Zt,1 ◦ · · · ◦ Zt,A
−U1 ◦ · · · ◦ Z1,A ◦ Z2,1 ◦ · · · ◦ Z2,A ◦ · · · ◦ Zt,1 ◦ · · · ◦ Zt,A|.

Our new goal is to upper bound the above expression. Towards this end, let us make notation a little more
convenient again. To do so, we identify [t]× [A] with the set [tA] in the natural way, so that we can write the
above expression as |Z1 ◦Z2 · · · ◦ZtA−U1 ◦Z2 ◦ · · · ◦ZtA|. Unrolling the definition of Zi, this becomes:

|CB(X,Y1, 1) ◦ CB(X,Y2, 2) ◦ · · · ◦ CB(X,YtA, tA)

−U1 ◦ CB(X,Y2, 2) ◦ · · · ◦ CB(X,YtA, tA)|.

Recall that we produced each Yi with a linear somewhere extractor, and thus for every i ∈ [tA] there is
some linear function Li : {0, 1}n → {0, 1}m such that Yi = Li(X), and thus the above expression becomes

|CB(X, L1(X), 1) ◦ CB(X, L2(X), 2) ◦ · · · ◦ CB(X, LtA(X), tA)

−U1 ◦ CB(X, L2(X), 2) ◦ · · · ◦ CB(X, LtA(X), tA)|.

Consider now the linear function L : {0, 1}n → ({0, 1}m)tA defined as L(x) := (L1(x), . . . , LtA(x)). By
Rao’s affine conditioning (Lemma 6.2), there exist independent affine sources A,B ∼ {0, 1}n such that
X := A + B, and H∞(A) ≥ k − mtA, and L(B) = 0 with probability 1. This means that L(X) =
L(A + B) = L(A) + L(B) = 0 + L(B) = L(B). And by the definition of L, this means that for any
i ∈ [tA] it also holds that Li(X) = Li(B). We substitute this into our expression.

|CB(X, L1(B), 1) ◦ CB(X, L2(B), 2) ◦ · · · ◦ CB(X, LtA(B), tA)

−U1 ◦ CB(X, L2(B), 2) ◦ · · · ◦ CB(X, LtA(B), tA)|.

But notice now that we have random variables A,B ∼ {0, 1}n and L1(B), . . . , LtA(B) ∼ {0, 1}m such
that A is independent from (B, L1(B), . . . , LtA(B)), and A has min-entropy at least k−mtA ≥ k2, while

117

L1(B) is uniform13 and X = A+B. This means that our correlation breaker works! In particular, we get
an upper bound of ε2 on the above expression. And thus we can finally upper bound Equation (6.1):

|R1 ◦R2 ◦ · · · ◦Rt −U1 ◦R2 ◦ · · · ◦Rt| ≤ ε2. (6.2)

Now, notice that if we wish to upper bound

|U1 ◦R2 ◦R3 ◦ · · · ◦Rt −U1 ◦U1 ◦R3 ◦ · · · ◦Rt|,

then it is equivalent to upper bound |R2 ◦R3 · · · ◦Rt −U1 ◦R3 ◦ · · · ◦Rt|, since the first instance of U1

on each side of the expression are independent. But notice that we can follow the exact same argument as
before to upper bound this by ε2, and thus

|U1 ◦R2 ◦R3 ◦ · · · ◦Rt −U1 ◦U1 ◦R3 ◦ · · · ◦Rt| ≤ ε2.

Combining this with Equation (6.2) yields, via the triangle inequality,

|R1 ◦R2 ◦ · · · ◦Rt −U1 ◦U2 ◦ · · · ◦Rt| ≤ 2ε2.

Continuing this argument will ultimately yield

|R1 ◦R2 ◦ · · · ◦Rt −Ut| ≤ tε2,

as desired at the beginning of the proof. Returning to our original objective, we have now shown that every
t good rows in the table (R1,R2, . . . ,RD) are tε2-close to uniform. Furthermore, recall that the number of
bad rows was at most ε1D. In other words, the source R := (R1,R2, . . . ,RD) is precisely a (ε1D, t, tε2)-
NOBF source! And by Corollary 6.1, this means that R is (Dttε2)-close to some (ε1D, t)-NOBF source
R′ ∼ {0, 1}D. Thus |NOBF(R′) −U1| ≤ ε3, which means that |NOBF(R) −U1| ≤ ε3 +Dttε2, by an
application of the triangle inequality and data-processing inequality. This completes the proof.

Given the above framework, we are now ready to construct our affine extractors that achieve almost
logarithmic min-entropy. In the full version of our paper [CGL21], we explicitly construct the following.

Lemma 6.4 (Linear seeded somewhere extractor). There exists a constant C > 0 which satisfies the
following. For every constant δ > 0, there exists a constant C ′ > 0 such that for every n ∈ N and
ξ(n) < 2(logn)

1/3
, the following holds. There exists an explicit linear seeded somewhere extractor ssExt :

{0, 1}n × {0, 1}d × [A] → {0, 1}m for affine sources of min-entropy k ≥ C · ξ(n) log n, which has seed
length d ≤ C ′ log n, advice size A ≤ C ′ log2(ξ(n)), output length m ≥ ξ(n) log n, and error ε ≤ 2−(1−δ)d.

Lemma 6.5 (Correlation breaker for linearly correlated sources). There exists a constant C > 0 such
that the following holds. There exists an explicit correlation breaker for linearly correlated sources
CB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1} for min-entropy k ≥ Ct2 log(a) log(na/ε), seed length
d ≥ Ct2 log(a) log(na/ε) + t3 log(na/ε), advice size a, tampering degree t, and error ε.

Our correlation breaker is highly involved, and involves a white-box reconstruction of several ingredients
that go into standard correlation breakers (for independent sources), to make them work for a single affine
source, instead. In a recent work, Chattopadhyay and Liao [CL22] gave a simple and elegant way to directly
(in a black-box manner) convert a standard correlation breaker into one that works for linearly correlated
sources. Finally, to complete the construction of our extractor, all we need is the following simple extractor
for (q, t)-NOBF sources, which is in fact just the majority function.

13Recall that L1(B) is uniform by our assumption (without loss of generality) that Y1,1 was uniform.

118

Lemma 6.6 (Extractor for (q, t)-NOBF sources [Vio14]). There exists a constant C > 0 such that the
following holds. There exists an explicit extractor NOBF : {0, 1}n → {0, 1} for (q, t)-NOBF sources with
error ε ≤ C · (log t√

t
+ q√

n
).

Given all of these ingredients, it is easy to finish the construction of our affine extractor for almost
logarithmic min-entropy (Theorem 6.2).

Proof of Theorem 6.2. Simply plug Lemmas 6.4 to 6.6 into the framework given by Lemma 6.3, setting
parameters appropriately.

6.4 Applications in pseudorandomness

In Part III of this thesis, we will see that affine extractors are surprisingly central figures in the world
of seedless extraction. In particular, they have recently emerged as a unifying model among the family of
samplable sources, in the sense that affine extractors can automatically extract from many of these seemingly
unrelated sources. As a result, our new affine extractors give (slightly) improved extractors for the two of
the most classic sources coming from this family. We go into detail below.

6.4.1 Extractors for small-space sources

Small-space sources are a classic type of samplable source, first introduced by Kamp, Rao, Vadhan and
Zuckerman [KRVZ11]. Informally, a space s source X ∼ {0, 1}n is just a source that can be generated by
an algorithm with s bits of memory (for a formal definition, see Definition 7.2). In Chapter 7, we give new
extractors for this model, improving the previous best entropy requirement from k ≥ s1.1 ·2log0.51 n [CL16b]
to k ≥ s · polylog(n) (Theorem 7.1). As it turns out, our new construction is based on a novel reduction
from small-space sources to affine sources.

Lemma 6.7 (A reduction from small-space sources to affine sources - Lemma 7.1, restated). Let X ∼
{0, 1}n be a space s source of min-entropy at least k. Then X is 2−k

′
-close to a convex combination of

affine sources of min-entropy k′, where

k′ ≥ ck

s · log(2n/k)

for some universal constant c > 0.

In order to obtain our small-space extractors for polylogarithmic min-entropy, we instantiate the above
reduction with the affine extractor of Li [Li16] (which works for polylogarithmic min-entropy). Using our
new extractors for affine sources that achieve almost logarithmic entropy, we can further improve this result
to obtain the following.

Theorem 6.3 (Extractors for small-space sources). For any constant ε > 0, there exists a constant C > 0
such that the following holds. There exists an explicit extractor Ext : {0, 1}n → {0, 1} for space s sources
of min-entropy k ≥ Cs · log2 n · log log n · (log log log n)6, which has error ε.

Proof. Combine Theorem 6.1 with Lemma 6.7.

119

6.4.2 Extractors for circuit sources

An equally popular model of samplable sources are circuit sources. If small-space sources model distribu-
tions samplable in limited space, then circuit sources model distributions samplable in limited time. Within
the class of circuit sources, local sources have gained a lot of attention. Here, we take such sources to be of
the form X = f(Uℓ), where each output bit fi of f depends on just a constant number of input bits (for a
formal definition, see Definition 8.2). As it turns out, these sources, too, are reducible to affine sources.

Lemma 6.8 (A reduction from local sources to affine sources [DW12, Vio14] - Theorem 8.4, restated). Let
X ∼ {0, 1}n be a local source of min-entropy k. Then X is 2−k

′
-close to a convex combination of affine

sources of min-entropy k′, where
k′ ≥ ck2/n

for some constant c > 0.

Instantiating the above reduction with the previous best affine extractor yields local source extractors for
min-entropy k ≥

√
n · polylog(n). Using our new affine extractors, we obtain the following improvement.

Theorem 6.4 (Extractors for local sources). For any constant ε > 0, there exists a constant C > 0 such
that the following holds. There exists an explicit extractor Ext : {0, 1}n → {0, 1} for local sources of
min-entropy k ≥ C

√
n log n · log log n · (log log log n)6, which has error ε.

Proof. Combine Theorem 6.1 with Lemma 6.8.

6.5 Applications in complexity theory

Finally, recall from Section 6.1 that many state-of-the-art explicit lower bounds come from affine extractors.
Given our improved extractors for affine sources, it is natural to ask if we also get improved lower bounds.

6.5.1 Explicit lower bounds against circuits and more

While it is true that our new affine extractors should give new lower bounds in every domain that they
have been applied, it seems as though the order of the improvement obtained is not quite in the realm of
interest. One exception, however is to model of DNFs of parities. These are depth 3 circuits of the form
OR ◦ AND ◦ XOR, and a natural goal is to find explicit functions f : {0, 1}n → {0, 1} such that the size of
the minimum such circuit computing f , denoted DNF⊕(f), is as large as possible. In a work by Cohen and
Shinkar [CS16b], it was shown that affine extractors (in fact, dispersers) have exactly such a property.

Lemma 6.9 ([CS16b]). Let f : {0, 1}n → {0, 1} be an affine disperser for dimension k. Then

DNF⊕(f) ≥ 2n−2k.

By plugging in our new affine extractors, we obtain the following.

Theorem 6.5 (Explicit lower bounds against DNFs of parities). There exists a constant C > 0 such that
there exists an explicit function f : {0, 1}n → {0, 1} with

DNF⊕(f) ≥ 2n/nlog logn·(log log logn)
6
.

Proof of Theorem 6.5. Combine Theorem 6.1 with Lemma 6.9.

Indeed, this is a noticeable improvement over the prior best explicit lower bounds for this model (coming
from the prior best affine extractor [Li16]), which achieved DNF⊕(f) ≥ 2n/npolylog(n). Furthermore ,it was
shown in [CS16b] that DNF⊕(f) ≤ O(2n/n), and thus Theorem 6.5 is nearly tight.

120

6.6 Future directions

In this chapter, we constructed near-optimal extractors for affine sources, which can handle min-entropy
k ≥ log1+o(1) n. Two years following our result, a breakthrough paper of Li [Li23] managed to finally bring
the min-entropy requirement down to k ≥ O(log n), which is asymptotically optimal. Still, both of our
extractors have high error, and many open questions around affine sources remain.

Low-error extractors for affine sources First, even though the extractor community has made great
progress on the min-entropy requirement of affine extractors, there is still much work to be done on con-
structing low-error affine extractors. Indeed, to date, we still don’t even know how to construct low-error
affine extractors that achieve min-entropy k ≥ n0.99. Going forward, we view this as one of the most funda-
mental open questions in extractor theory, given the central role that affine extractors play in the field, and
the fact that high-quality randomness is crucial in cryptography [DOPS04].

Simpler constructions of affine extractors The current techniques that go into building affine extractors
(and independent source extractors, for that matter) are highly involved, and exhibit fundamental barriers to
achieving low-error. It would be great to inject this problem with some brand new ideas, and construct much
simpler affine extractors. The recent paper [HIV22] already has some interesting results in this direction.

Extractors for quadratic sources Finally, should the reader feel particularly adventurous, it would be
interesting to attempt an explicit construction of extractors for quadratic sources. These are natural gen-
eralizations of affine sources, in the following sense: while affine sources are uniform over the solutions
to a system of linear equations, quadratic sources are uniform over the solutions to a system of quadratic
(i.e., degree 2) equations. It is known that any explicit construction of an extractor for such sources with
min-entropy 0.01n would immediately imply new state-of-the-art circuit lower bounds [GK16].

121

122

Part III

Extractors for low-complexity sources

123

Chapter 7

Extractors for small-space sources

In Part I of this thesis, we constructed robust extractors for independent sources. In Part II of this thesis,
we constructed extractors for algebraic sources. As we enter Part III of this thesis, we seek to construct
extractors for low-complexity sources. This model represents the third and final key flavor of structure
within the world of seedless extraction.

A low-complexity source X is simply a source that can be generated by a low-complexity algorithm.
Also known as samplable sources, these sources were first introduced by Trevisan and Vadhan [TV00],
under the suggestion that they are a reasonable model for the randomness one might actually find in nature.
Beyond their natural definition, samplable sources are exceedingly general, and are deeply connected to
emerging new areas of complexity theory. Within the family of samplable sources, small-space sources
distinguish themselves as one of the oldest and most general models. With roots going back to the 1960s,
these sources capture distributions that can be sampled by algorithms with limited memory.

In this chapter, we construct extractors for small-space sources that offer an exponential improvement
over the previous state-of-the-art. Prior to our work, the best-known extractor for space s sources over n bits
required min-entropy k ≥ s1.1 ·2log0.51 n. In our work, we construct extractors that require just k ≥ s·logC n
entropy for some constant C. Our new extractors are based on a surprising new structural result, which says
that small-space sources are close to a convex combination of affine sources. As such, we can simply take
any black-box affine extractor and use it to extract from small-space sources. In fact, using our new-and-
improved affine extractors from Chapter 6, we can even extract from space s sources with min-entropy
k ≥ s · log2+o(1) n, which is nearly optimal.

Finally, we provide an additional explicit extractor that can achieve exponentially small error (which is
crucial for cryptographic applications). Here, we cannot simply apply an affine extractor, since all known
low-error affine extractors require extremely high min-entropy. Instead, we invoke a known reduction from
small-space sources to adversarial sources, which allows us to exploit our brand new low-error extractors
from Chapter 3. As a result, for the challenging low-error setting, we obtain extractors for space s ≤ n0.01

sources that can handle min-entropy k ≥ n0.51. This significantly improves the previous state-of-the-art,
which required min-entropy k ≥ n0.99.

The results presented in this chapter are based on the following joint work:

• [CG21] Eshan Chattopadhyay and Jesse Goodman. Improved extractors for small-space sources. In 62nd Annual Sympo-
sium on Foundations of Computer Science (FOCS 2021), pages 610–621. IEEE, 2021

125

7.1 Introduction

In our journey through the world of seedless extraction, we have already explored two of the most classical
flavors of structure: the independent source model (Part I), and the algebraic source model (Part II). Yet,
one key flavor remains. As we embark upon the third and final leg of our journey, we turn to this third and
final flavor of structure. In this part of the thesis (Part III), we set out to explore the model of low-complexity
sources. As tradition would have it, let us begin with the classical definition of an extractor.

Definition 7.1 (Extractor). Let X be a family of distributions over {0, 1}n. A function Ext : {0, 1}n →
{0, 1}m is called an extractor for X with error ε if for every X ∈ X ,

|Ext(X)−Um| ≤ ε.

Low-complexity sources are a whole different beast than the models we’ve seen before. Previously,
we’ve either assumed that each source X ∈ X consists of several independent chunks, or that each source
X ∈ X exhibits some sort of algebraic structure. Now, we assume that each source X ∈ X exhibits some
amount of computational structure. This will turn out to be an exceedingly general notion, subsuming many
previously studied models (like algebraic sources), and bearing deep ties to complexity theory.

Research on low-complexity sources has generally been divided into two complementary directions.1

The first direction devotes itself to the study of recognizable sources [Sha11c, KVMS12, LZ19]. A recog-
nizable source X ∼ {0, 1}n is just a source that is uniform over the set {x : f(x) = 0} for some function
f coming from a “low-complexity” class C. Extractors for recognizable sources capture a wide array of
classical primitives,2 and are notoriously difficult to construct. Despite this, there has been exciting progress
in this direction, and we now have constructions (that work in the high entropy regime) for several classes
C, including communication protocols [Sha11c, LZ19], linear threshold functions [LZ19], and AC0 circuits
[Sha11c, LZ19].3 Through this work, these extractors have also proven themselves to be closely related to
the pursuit of average-case lower bounds [LZ19] and derandomization [Sha11c, KVMS12].

The second direction of study (within the setting of low-complexity sources) focuses on the model of
samplable sources [TV00, KRVZ11, DW12, Vio14, Vio12b, CL16b, Li16, CGGL20, CG21, CGZ22, CL22,
ACG+22, Li23]. A samplable source X ∼ {0, 1}n is just a source of the form f(U) for some function
f coming from a “low-complexity” class C.4 Thus, these sources correspond to distributions that can be
sampled efficiently, and were originally introduced by Trevisan and Vadhan [TV00] under the suggestion
that they are a good model for distributions that might actually arise in nature. More concretely, samplable
sources generalize several previously studied models,5 and are intimately connected to a burgeoning new
area of complexity theory (Chapter 9).

Our focus In this thesis, we focus on the second (more well-studied) direction, and aim to construct new
extractors for samplable sources. As these sources model distributions that can be sampled efficiently (i.e.,

1Here, by “complementary,” we mean in the colloquial (non-mathematical) sense: in that the study of one direction often yields
insight into the study of the other.

2For example, we can recover the definition of affine extractors (Chapter 6) or extractors for variety sources (Part II) by setting
C to be the family of affine functions or low-degree polynomials, respectively.

3Of course, as suggested in the footnote above, we can also handle the class C of affine functions or low-degree polynomials.
4Thus, while recognizable sources capture distributions over the preimage of a low-complexity function, samplable sources

capture distributions over the image of a low-complexity function.
5For example, we can recover the definition of affine extractors (Chapter 6) or extractors for polynomial sources (Part II) by

setting C to be the family of affine functions or low-degree polynomials, respectively.

126

with limited resources), it may not be surprising to hear that research on samplable sources has also branched
off into two different directions.

• The study of sources samplable with limited time (as modeled by small circuits or Turing machines)
[TV00, DW12, Vio14, Vio12b, Li16, ACG+22].

• The study of sources samplable with limited memory (as modeled by so-called small-space sources)
[KRVZ11, CL16b, CGGL20, CG21, CGZ22, CL22, Li23].

In this thesis, we will carefully study both directions. We give a thorough treatment of the first direction
in Chapter 8, and focus here on sources samplable with limited memory.

Sources samplable with limited memory Today, the most classical way to model sources samplable with
limited memory is via small-space sources [KRVZ11]. To define this class of sources formally, one uses
branching programs (which model the evolution of state in the memory-bounded algorithm). A branching
program of width w and length n is just a directed acyclic graph with n+1 layers, where the first layer has 1
node, the remaining layers have w nodes (each), and every edge starting in layer i terminates in layer i+ 1.
We assign an output bit and transition probability to each edge,6 and define a small-space source as follows.

Definition 7.2 (Small-space source). A source X ∼ {0, 1}n is called a space s source if it is generated by a
random walk over a branching program of width 2s and length n, which starts in the first layer, transitions
according to the transition probabilities, and prints the output bits seen along the way.

Staring at this definition, one may be concerned that it does not perfectly align with the definition of
samplable sources put forth at the beginning of the chapter. Namely, it is not quite of the form X = f(U)
for some low-complexity function f . However, have no fear: in Chapter 9, we show that Definition 7.2 is
equivalent to passing uniform bits U into a (so-called) read-once branching program f .7 Thus, small-space
sources fit perfectly into the line of research on samplable sources, and (as hinted at before) their study may
therefore shed new insight into an exciting new area of complexity theory (Chapter 9). Within the world
of extractors, though, these sources are most interesting because they are extremely general, and capture
several classical settings.

Relationships to other models As it turns out, small-space sources [KRVZ11] can actually be viewed
as the culmination of a series of works on increasingly general ways to model sources samplable with
limited memory [vN51, Sam68, Eli72, Blu86, Vaz87b, Vaz87a, KM04, KM05]. Because of this, small-
space sources not only generalize classical models like von Neumann’s independent coin flips [vN51], but
they also capture sources samplable by two-state Markov chains [Sam68], constant-state Markov chains
[Eli72, Blu86], and even arbitary-state, time-dependent Markov chains [Vaz87b, Vaz87a, KM04, KM05].
However, the generality of small-space sources does not stop there, and these sources can also simulate
several models that do not have a “memory” component in their definition. In particular, small-space sources
also generalize oblivious bit-fixing sources (Part II), independent sources (Part I), and even adversarial
sources (Chapter 3).8 In fact, it is suggested in [KRVZ11] that the only model of sources unrelated to
small-space sources appears to be the class of affine sources (Chapter 6).

6Note that any given node can have as many as w outgoing edges, over which the transition probabilities should sum to 1.
7Read-once branching programs, which we will define in Chapter 9, are the canonical way to model small-space computation.
8As we will see shortly, this connection to adversarial sources also goes in the other way.

127

Prior constructions Needless to say, small-space sources are a very general model, making explicit ex-
tractors for this setting particularly valuable. Unfortunately, these extractors have remained elusive, and
relatively few constructions are known. Non-explicitly, we know there exist extractors for space s sources
of min-entropy k ≥ O(s+ log n) which have extremely low error ε = 2−Ω(k) [KRVZ11]. Explicitly, on the
other hand, the best known extractors for space s sources (prior to our work) are as follows.

• The low-error setting: There exist explicit extractors for min-entropy k ≥ O(n0.99 + n2/3s1/3).

• The high-error setting: There exist explicit extractors for min-entropy k ≥ O(s1.1 · 2log0.51 n).

Let us briefly review the history on small-space extraction, which led to these explicit constructions.
The first explicit extractor for small-space sources is often credited to König and Maurer [KM04,

KM05]. While these authors did not directly study small-space sources, their result implies that small-
space sources can be reduced to two independent sources. As a result, they show that inner product (mod 2)
is an extractor for space s sources of min-entropy k ≥ s+ 0.51n with exponentially small error.

A year later at STOC 2006, this result was significantly improved by Kamp, Rao, Vadhan and Zucker-
man [KRVZ11], who formally introduced the model of small-space sources and launched a systematic study
on them. While the previous work reduced small-space sources to (two) independent sources, this new work
considered a reduction to total-entropy sources. Total-entropy sources generalize the independent source
model by enforcing an entropy requirement over the total collection of sources, instead of on each individ-
ual source. By carefully constructing extractors for this new model, Kamp, Rao, Vadhan and Zuckerman
successfully extract from space s sources of min-entropy k ≥ O(n1−γ + n2/3s1/3) for some small constant
γ > 0, while still achieving exponentially small error.

Ten years later, Chattopadhyay and Li [CL16b] dramatically improved the entropy requirement above,
by reducing to an even more general model known as sumset sources. A sumset source is generated by
taking the sum of several independent sources (mod 2), each with their own entropy guarantee. Using this
generality, Chattopadhyay and Li showed how to successfully extract from space s sources of min-entropy
k ≥ O(s1+α · 2log0.5+α n) for an arbitrarily small constant α > 0, albeit with polynomially small error.

Our goal As can be seen, while there has been significant progress on constructing extractors for small-
space sources, there is still much work to be done. In particular, even in the high-error setting, the best
known explicit extractor requires min-entropy k ≥ O(s1.1 · 2log0.51 n), whereas non-explicitly we know it is
possible to achieve k ≥ O(s+ log n). Naturally, this raises the question,

Can we construct improved extractors for small-space sources?

This is our primary goal.

7.2 Our results

In this chapter, we explicitly construct two significantly improved extractors for small-space sources. Our
new constructions are based on two key new ingredients: namely, a new structural result for small-space
sources, and a new extractor a different, equally important setting. Our small-space extractors follow easily
from these ingredients, which may be of independent interest. We formally state these results, below.

128

Extractors for polylogarithmic entropy

In our first main result, we construct near-optimal small-space extractors in the polynomial error regime.

Theorem 7.1 (Small-space extractors for polylogarithmic entropy). There exist universal constantsC, γ > 0
such that the following holds. There exists an explicit extractor Ext : {0, 1}n → {0, 1}m for space s sources
of min-entropy k ≥ s · logC n, which has output length m ≥ (k/s)γ and error ε = n−γ .

Thus, our extractor requires min-entropy k ≥ s · logC n, which is an exponential improvement over
the previous best requirement [CL16b] of k ≥ s1.1 · 2log0.51 n. Furthermore, since the best non-explicit
extractors for small-space sources require min-entropy k ≥ O(s + log n), it follows that our new explicit
extractor achieves a near-optimal min-entropy requirement (in the polynomial error regime). Most notably,
however, Theorem 7.1 is just a simple consequence of the following new structural result, which establishes
a surprising new connection between small-space sources and affine sources (Chapter 6).

Lemma 7.1 (Small-space sources are (close to) a convex combination of affine sources). There is a universal
constant c > 0 such that the following holds. Let X ∼ {0, 1}n be a space s source of min-entropy k. Then
X is 2−ck-close to a convex combination of affine sources of min-entropy ck

s log(2n/k) .

Indeed, by combining this structural result with the affine extractor of Li [Li16] (which works for poly-
logarithmic min-entropy and has polynomially small error), we immediately obtain Theorem 7.1. In fact,
if we are only interested in outputting one bit with constant error, then we can even apply our new affine
extractor from before (Theorem 6.1) to obtain a small-space extractor that can handle even less min-entropy
k ≥ s · log2+o(1) n. Beyond these quantitative improvements to the min-entropy requirement in small-space
extraction, Lemma 7.1 is also interesting for one key qualitative reason, which we highlight below.

A fascinating takeaway of Lemma 7.1 is the deep connection it forges between samplable sources and
affine sources. Indeed, it was previously known that circuit sources (the “other half” of samplable sources,
which we study in Chapter 8) can be reduced to affine sources [DW12, Vio14]. Our result shows that
small-space sources can also be reduced to affine sources, thereby cementing the role of affine sources as
a unifying figure in samplable-source extraction. In fact, both flavors of samplable sources can actually be
reduced to the exact same specialization of affine sources (known as 1-local sources),9 whose connection to
small-space sources (Lemma 7.7) is apparently even stronger than to circuit sources (Lemma 8.3).

Finally, it turns out that this new connection between small-space sources and affine sources has impli-
cations beyond the world of extractors. Namely, it can be leveraged to yield interesting new results on the
complexity of sampling. In this exciting new subfield of complexity theory (Chapter 9), a classical result
shows that AC0 circuits can sample the distribution (Un, b(Un)) for any linear map b [Bab87, BL87], and
even some quadratic maps such as inner product (mod 2) [IN96]. Recently, however, Viola showed that
there do exist some quadratic maps b that AC0 circuits cannot sample [Vio16]. In Section 7.4, we show that
the same is true for limited memory algorithms (and, more specifically, read-once branching programs), via
a simple application of Lemma 7.1.

Extractors with exponentially small error

Returning to the world of extractors, recall that our first main result (Theorem 7.1) achieves near-optimal
extractors for small-space sources in the polynomial error regime. While polynomially small error suf-
fices for many applications, cryptographic applications often demand extractors with negligibly small error
[DOPS04]. In our second main result, we construct new small-space extractors of exactly this type.

9A 1-local source (Definition 8.2) is just an affine source whose underlying subspace has a basis made out of “disjoint” vectors.

129

Theorem 7.2 (Low-error small-space extractors). For any fixed 0 < δ ≤ 1/2, there exist universal constants
C, γ > 0 such that the following holds. There exists an explicit extractor Ext : {0, 1}n → {0, 1}m for space
s sources of min-entropy k ≥ Cn1/2+δs1/2−δ, which has output length m ≥ kγ and error ε = 2−n

γ
.

Prior to our work, the best-known low-error extractor for small-space sources required min-entropy k ≥
O(n1−γ + n2/3s1/3) for some tiny constant γ > 0 [KRVZ11]. Thus, our new extractors enjoy an improved
min-entropy requirement across all ranges of s,10 with an especially pronounced improvement for space
s ≤ n0.01 sources. Here, we improve the min-entropy requirement from k ≥ O(n0.99) to k ≥ O(n0.51).

In order to prove Theorem 7.2, a natural approach is to exploit our new reduction from small-space
sources to affine sources (Lemma 7.1). However, since the best known low-error affine extractors [Bou07,
Yeh11, Li11b] still require very high min-entropy k ≥ O(n/

√
log log n), this unfortunately will just not

work. Luckily, as hinted at above, the specific version of Lemma 7.1 that we actually prove (Lemma 7.7)
reduces small-space sources to a special type of affine sources known as 1-local sources, which admit
explicit low-error extractors for much lower min-entropy k ≥ O(n1/2+δ) [Rao09b, DW12, Vio14] (see
Section 8.1). Still, combining these extractors with our new reduction (Lemma 7.7) only yields small-space
extractors for min-entropy k ≥ O(n1/2+δs), which is much worse than Theorem 7.2 when s is large.

To get around this, we end up reducing small-space sources to a different family of sources: namely,
adversarial sources. Recall that an (N,K, n, k)-adversarial source X consists of N independent sources
X1,X2, . . . ,XN , each over n bits, with the guarantee that at least K of them are good (i.e., have min-
entropy at least k). In Chapter 3, we launched a systematic study into adversarial sources, and constructed
significantly improved extractors for them. In particular, we proved the following.

Lemma 7.2 (Extractors for adversarial sources - Theorem 3.1, restated). For any fixed δ > 0, there exist
constants C, γ > 0 such that the following holds. There exists an explicit extractor Ext : ({0, 1}n)N →
{0, 1}m for (N,K, n, k)-adversarial sources with K ≥ CN δ good sources of min-entropy k ≥ logC n,
which has output length m ≥ kγ and error ε = 2−k

γ
.

Previously, the best-known low-error extractor for small-space sources [KRVZ11] was constructed by
combining a classic reduction from small-space sources to adversarial sources (Lemma 7.3), with an explicit
extractor for adversarial sources that worked for K ≥ O(

√
N) good sources of min-entropy k ≥ O(n0.99).

By plugging in our new-and-improved extractor for adversarial sources (Lemma 7.2), we immediately obtain
our new-and-improved extractor for small-space sources (Theorem 7.2). Moreover, we will see that this is
nearly the best possible low-error small-space extractor that one can hope to construct using this technique.
Finally, while our new low-error small-space extractors are an immediate consequence of our new low-error
adversarial source extractors, it is interesting to reflect upon the huge amount of machinery that went into the
latter (including tools from coding theory, extractor theory, and communication complexity), and observe
that this machinery is now finding important applications in small-space extraction.

Organization

We construct our new extractors for small-space sources in Section 7.3. Here, we start with Section 7.3.1,
where we quickly recall the reduction from small-space sources to adversarial sources, and plug in our
new adversarial source extractors (Lemma 7.2) to obtain our new low-error small-space extractors (The-
orem 7.2). Then, in Section 7.3.2, we demonstrate our new reduction from small-space sources to affine
sources (Lemma 7.1), and use it to obtain our new small-space extractors for polylogarithmic entropy (The-
orem 7.1). We show an interesting bonus application of this reduction in complexity theory in Section 7.4,
and conclude with some open problems in Section 7.5.

10It is important to note that we always have s < n, because otherwise the entropy bounds become trivial.

130

7.3 The extractors

In this section, we construct all of our new extractors for small-space sources. We start with our extractors
that achieve exponentially small error (Theorem 7.2) in Section 7.3.1, as these precipitate almost immedi-
ately from other results in this thesis. Then, in Section 7.3.2, we turn to give our new extractors that achieve
polylogarithmic entropy (Theorem 7.1), using a novel reduction from small-space sources to affine sources.

7.3.1 An old reduction from small-space sources to adversarial sources

As promised, we start by constructing our new low-error small-space extractors. We prove the following.

Theorem 7.3 (Low-error small-space extractors - Theorem 7.2, restated). For any fixed 0 < δ ≤ 1/2,
there exist universal constants C, γ > 0 such that the following holds. There exists an explicit extractor
Ext : {0, 1}n → {0, 1}m for space s sources of min-entropy k ≥ Cn1/2+δs1/2−δ, which has output length
m ≥ kγ and error ε = 2−n

γ
.

As it turns out, given all of the tools we’ve developed thus far, it is not difficult to prove this result. In-
deed, by taking a standard reduction from small-space sources to adversarial sources (Chapter 3), combined
with our brand new adversarial source extractors (Theorem 3.1), the result is nearly immediate. In fact, to an
avid reader of this thesis, the result may even look familiar - perhaps even too familiar. This is because we
already proved this theorem in Section 3.6! However, we choose to include it again here, in order to collect
all of our results on small-space sources in one place, and to present a slightly more streamlined argument.11

We aim to keep things brief, and the reader is encouraged to revisit Section 3.6 should any confusions arise.
Now, let’s begin by presenting a standard reduction from small-space sources to adversarial sources.

Lemma 7.3 (A reduction from small-space sources to adversarial sources - implicit in Lemmas 3.21
and 3.22). There is a universal constant C > 0 such that the following holds. Let X ∼ {0, 1}n be a space
s source of min-entropy k. Then for any N1,K1, n1, k1 such that n = N1n1 and

k ≥ C · (N1s+N1k1 + n1K1),

it holds that X is 2−k1-close to a convex combination of (N1,K1, n1, k1)-adversarial sources.

Recall that in order to prove such a result, the main idea is to consider the random walk over the branch-
ing program that generates the small-space source, and condition on hitting a few nodes across several
equally spaced layers. This will turn the small-space source into a sequence of independent sources, with
some guarantee on the total amount of min-entropy that they contain. Then, using an averaging argument,
one immediately obtains that a decent number of these sources contain a decent amount of entropy - or in
other words, the sequence of independent sources is, in fact, an adversarial source (Definition 3.2).

Proof of Lemma 7.3. Let W = (W0,W1, . . . ,Wn) ∼ ({0, 1}s)n+1 be a random variable holding the
states reached in layers 0, 1, . . . , n of the branching program in the random walk that generates X. Define
W∗ := (Wn1 ,W2n1 , . . . ,WN1n1), and recall that the min-entropy chain rule (Lemma 2.1) tells us that

Pr
w∼W∗

[H∞(X |W∗ = w) ≥ k −N1s− k1] ≥ 1− 2−k1 .

11Recall that our proof of Theorem 7.3 in Section 3.6 went through an intermediate model, known as total-entropy sources, so
that we could recover new extractors for that setting as well. Here, we will take no such detour.

131

Moreover, it is straightforward to verify that upon any such conditioning, X becomes a sequence of N1

independent sources X1,X2, . . . ,XN1 over n1 bits each. And in the good conditionings (which enjoy the
entropy lower bound presented above), an averaging argument tells us that at least K1 of these sources have
min-entropy at least k1, as long as

N1k1 +K1n1 ≤ k −N1s− k1.

In other words, with probability 1−2−k1 over fixing w ∼W∗, we get that X becomes an (N1,K1, n1, k1)-
adversarial source, provided that k ≥ N1s+N1k1+K1n1+k1. This completes the proof, via Fact 2.6.

Equipped with this reduction from small-space sources to adversarial sources, now is the perfect time to
invoke our new extractors for adversarial sources (Theorem 3.1) from Chapter 3.

Lemma 7.4 (Extractors for adversarial sources - Lemma 7.2, restated). For any fixed δ > 0, there exist
constants C, γ > 0 such that the following holds. There exists an explicit extractor Ext : ({0, 1}n)N →
{0, 1}m for (N,K, n, k)-adversarial sources with K ≥ CN δ good sources of min-entropy k ≥ logC n,
which has output length m ≥ kγ and error ε = 2−k

γ
.

By combining the above reduction from small-space sources to adversarial sources (Lemma 7.3) with
our low-error adversarial source extractors (Lemma 7.4), we immediately obtain our new low-error extrac-
tors for small-space sources (Theorem 7.3). We present a short proof of this, below.

Proof of Theorem 7.3. Define the parameters N1 =
√
n/s and n1 =

√
sn and K1 = N δ

1 and k1 = nδ1.
Without loss of generality, we assume that N1 and n1 are integers, as it is easy (but tedious) to extend the
proof to handle when this is not the case. Now, invoke the reduction from small-space sources to adversarial
sources (Lemma 7.3) with the above parameters, and combine it with our new extractors for adversarial
sources (Lemma 7.4). The result is now immediate by resetting the constants C, δ appropriately.12

This completes the proof of our new low-error extractors for small-space sources that can handle min-
entropy k ≥ O(n1/2+δs1/2−δ). It is worth mentioning that such a min-entropy requirement is almost the
best possible that one could hope for using a reduction to adversarial sources. Indeed, this min-entropy
requirement is close to k ≥

√
n, and it is not hard to show that this is, in fact, a barrier for reductions of the

above type. To see why, simply note that such a reduction must always either produce N1 ≥
√
n chunks or

chunks of size n1 ≥
√
n. If we start off with a small-space source X ∼ {0, 1}n of min-entropy k <

√
n,

then in the former case, the min-entropy chain rule will always destroy all the min-entropy in X. And in
the latter case, all of the min-entropy of X may get stuck in a single source, from which extraction will be
impossible (Fact 1.1). Thus, if we want to break the k =

√
n min-entropy barrier, we need a new idea.

7.3.2 A new reduction from small-space sources to affine sources

In order to break the above min-entropy barrier and construct significantly improved extractors for small-
space sources, the key new idea is to reduce to affine sources. In this section, we will provide exactly such
a reduction, and use it to obtain low-entropy extractors for small-space sources. Our extractors not only
handle min-entropy below

√
n, but can even extract from polylogarithmic entropy. We record this result

below (Theorem 7.1), which we view as the main contribution of this chapter.

12One should also notice (and use) the fact that it is okay to assume s ≤ n, since otherwise the theorem statement is trivial.

132

Theorem 7.4 (Small-space extractors for polylogarithmic entropy - Theorem 7.1, restated). There exist uni-
versal constants C, γ > 0 such that the following holds. There exists an explicit extractor Ext : {0, 1}n →
{0, 1}m for space s sources of min-entropy k ≥ s · logC n, which has output length m ≥ (k/s)γ and error
ε = n−γ .

As promised, the key new ingredient behind these low-entropy extractors is a new, efficient reduction
from small-space sources to affine sources. We prove the following, which says every small-space source is
exponentially close to a convex combination of affine sources with just a little less min-entropy.

Lemma 7.5 (A reduction from small-space sources to affine sources - Lemma 7.1, restated). There is a
universal constant c > 0 such that the following holds. Let X ∼ {0, 1}n be a space s source of min-entropy
k. Then X is 2−ck-close to a convex combination of affine sources of min-entropy ck

s log(2n/k) .

Given a reduction of this form, it is now trivial to obtain low-entropy extractors for small-space sources.
Indeed, as we saw in Chapter 6, affine extractors have occupied a central role through the history of extractor
theory, and many explicit constructions are already known. We record one such construction below.

Lemma 7.6 (Extractors for affine sources [Li16]). There exist universal constants C, γ > 0 such that the
following holds. There exists an explicit extractor Ext : {0, 1}n → {0, 1}m for affine sources with min-
entropy k ≥ logC n, which has output length m ≥ kγ and error ε = n−γ .

Using Li’s extractor, we immediately obtain our small-space extractor for polylogarithmic min-entropy.

Proof of Theorem 7.4. Simply combine Lemma 7.5 with Lemma 7.6.

Needless to say, the key new ingredient that goes into the above proof is our new reduction from small-
space sources to affine sources (Lemma 7.5), and this is all that remains to prove. However, before we do
so, let us state a few other interesting ways to apply this reduction.

Extractors for small-space sources with almost logarithmic min-entropy First, we recall that in an
earlier chapter of this thesis (Chapter 6), we actually obtained new affine extractors that can handle min-
entropy k ≥ Õ(log n), which is strictly better than the min-entropy requirement in Lemma 7.6.13 By
combining our new affine extractors with our new reduction, we immediately obtain constant-error extractors
for small-space sources with min-entropy k ≥ Õ(s · log2 n).

Super-low-error extractors for small-space sources On the other end of the extreme, one can combine
a classical affine extractor of Bourgain [Bou07] with our new reduction to obtain extractors for small-space
sources of min-entropy k ≥ δsn with error ε = 2−Ω(n), for any constant δ > 0. To the best of our
knowledge, this is the only nontrivial small-space extractor that achieves super low error ε = 2−Ω(n), as all
previous constructions have error at least ε = 2−Ω̃(n) [KRVZ11]. This improvement in error is minor, but
we include it as a nice demonstration that our reduction has very low error and thus has the capability to
produce low-error small-space extractors. In our main application of it (Theorem 7.4), however, we use a
polynomial-error affine extractor, whose error dominates the very low error of the reduction.

13Our extractors, however, have slightly worse error, which can be taken to be any constant ε > 0.

133

Semi-explicit low-error extractors for small-space sources Finally, on the topic of low-error small-
space extractors, our new reduction can be used to construct semi-explicit extractors of this type. In more
detail, a classical result of Cohen and Tal [CT15] (Theorem 8.7) shows that for any constant δ > 0, there
exists a (not necessarily fully explicit) constant-degree polynomial over F2 that extracts from affine sources
of min-entropy k ≥ nδ with error 2−Ω(k). Combining this with our new reduction yields small-space
extractors for min-entropy k ≥ snδ with error 2, which would greatly improve upon Theorem 7.2 if the
construction were fully explicit.

With all of these remarks out of the way, let us finally prove our reduction from small-space sources to
affine sources (Lemma 7.5). We start with a proof overview, before diving into the proof in full formality.

An overview of the proof

As we saw in Section 7.3.1, it is impossible to extract from small-space sources X ∼ {0, 1}n with entropy
k <

√
n using a reduction to adversarial sources. Recall that this is because if we try to split up X into t

independent chunks by fixing the vertices hit across t equally-spaced layers, we run into a lose-lose scenario.
In particular, if t ≥

√
n, then there will be k−st ≤ k−1·

√
n < 0 bits of entropy left after applying the min-

entropy chain rule (Lemma 2.1), but if t <
√
n, then we will produce a chunk of size n/t >

√
n > k, which

could hold all of the entropy and thus make extraction impossible (Fact 1.1). As promised, to circumvent
this barrier, we provide a new reduction from small-space sources to affine sources. This reduction bypasses
the
√
n barrier by adaptively choosing vertices to fix. This was not possible above, because such adaptive

fixings can produce independent sources of unknown and varying lengths, which cannot be captured by
adversarial sources. We describe our new reduction in more detail below.

The reduction Our new reduction from small-space sources to affine sources starts the same way as
before: by fixing t vertices in the random walk generating the space s source X, to create t independent
sources with roughly k−st bits of total entropy. The key idea now is to use an extremely useful observation
we proved in Chapter 3, which says that any source with entropy at least 1 is a convex combination of
affine sources with entropy 1 (Lemma 3.20). Given this observation, we can say that as long as t′ of the t
independent sources have just one bit of entropy, then X currently looks like a convex combination of affine
sources with min-entropy t′.

On the other hand, if no t′ of the t independent sources have just one bit of entropy, then the k − st
remaining bits of entropy must be very highly concentrated on the t′− 1 most entropic independent sources.
In this case, we can simply recursively apply the reduction on these t′− 1 independent sources. Because the
entropy rate increases on each recursive call, we know the recursion must eventually stop, or else we will
end up with a source with entropy rate exceeding 1, a contradiction. Thus, via a win-win argument, we are
able to show that X is a convex combination of affine sources with entropy t′.

We show that even if X starts with entropy just k ≥ polylog n, our resulting affine source will have
almost all of the entropy of the original source; namely, t′ will barely be smaller than k. We are able to
achieve such an efficient reduction for two reasons. First, our use of affine sources allows an adaptive and
recursive reduction that bypasses the k ≥

√
n discussed above. Second, our reduction to a sequence of t′

independent sources with entropy 1 (which we argue is an affine source with entropy t′ using Lemma 3.20)
results in a negligible amount of lost entropy from each recursive step, whereas previously obtained recursive
reductions to a constant number of sources with relatively high entropy [CL16b] are forced to lose much
more entropy in each such step. As a result, we are able to bypass a k ≥ 2

√
logn entropy barrier arising in

the work of Chattopadhyay and Li [CL16b].

134

Finally, we note that by carefully tracking the random variables that pop up in our recursion, we are able
to describe all of the fixings that occur throughout the recursion by the fixing of a single random variable.
As a result, we only need to apply the min-entropy chain rule (Lemma 2.1) once, which keeps the error of
our reduction very low: 2−Ω(k), compared to an error of 2−k

Ω(1)
in the recursive reduction of [CL16b].

A formal presentation of the proof

With our game plan in mind, we are now ready to provide a formal proof of our reduction from small-
space sources to affine sources (Lemma 7.5). As it turns out, we will actually prove an even stronger
reduction, from small-space sources to 1-local sources, which are a very special type of affine sources.
Informally, a 1-local source X ∼ {0, 1}n with min-entropy k is just a source of the form X = f(Uk),
where f : {0, 1}k → {0, 1}n is a function where each output bit depends on just 1 input bit. For a formal
definition, there are many equivalent options. We will use a definition that does the best job at highlighting
the fact that 1-local sources are indeed special cases of affine sources. In more detail, we say that a matrix
A has row-weight at most w if each row contains at most w 1s, and we define 1-local sources as follows.

Definition 7.3 (1-local source - specialization of Definitions 6.2 and 8.2). A source X ∼ {0, 1}n is called a
1-local source if there exists some matrix A ∈ Fn×k2 with row-weight at most 1 and some b ∈ Fn2 such that

X = AUk + b,

where Uk is a uniform random variable over Fk2 .

Now, before we proceed to formally prove our reduction, we have one surprise left: not only do reduce
small-space sources to the special case of affine sources known as 1-local sources, but we actually reduce
small-space sources to a special case of 1-local sources known as simple 1-local sources.

Definition 7.4 (Simple 1-local source). Let A ∈ Fn×k2 be a matrix with row-weight at most 1 and b ∈ Fn2 be
some vector. We say that the 1-local source X = AUk + b is simple if for any 1 ≤ i < j ≤ n, it holds that

max{α : Aα,i = 1} < min{α : Aα,j = 1}.

In other words, a simple 1-local source is one which admits a generating matrix A whose columns have
supports that are not interleaved. Given these definitions, we can finally state the actual reduction we obtain.

Lemma 7.7 (A reduction from small-space sources to 1-local sources). There is a universal constant c > 0
such that the following holds. Let X ∼ {0, 1}n be a space s source of min-entropy k. Then X is 2−ck-close
to a convex combination of simple 1-local sources of min-entropy ck

s log(2n/k) .

As discussed, since simple 1-local sources are a specialization of affine sources, the above lemma im-
mediately implies our reduction to affine sources Lemma 7.5, and we have already seen how this can be
used to obtain our low-entropy extractors for small-space sources (Theorem 7.4). Thus, all that remains is
to prove Lemma 7.7. But before we do so, let us make a few brief remarks.

An alternative construction of low-error small-space extractors First, now that we have a reduction
from small-space sources to 1-local sources (instead of affine sources), we actually do have a way to ex-
ploit this new reduction in order to get new low-error extractors for small-space sources. In particular,
while there are no known explicit general-purpose low-error affine extractors that can handle min-entropy
significantly below k = o(n), there are explicit low-error extractors for 1-local sources that can handle

135

min-entropy slightly above k =
√
n [Rao09b]. As a result, the above reduction actually provides an alter-

native construction of low-error small-space extractors. However, these extractors will require min-entropy
k ≥ O(n1/2+δs), which is worse than the parameters achieved in Theorem 7.3. Still, it seems useful to have
a single, unifying way to extract from small-space sources using affine extractors at all error regimes.

A near-equivalence between small-space sources and 1-local sources Second, we observe that the re-
duction in Lemma 7.7 also works in the reverse direction, implying that small-space sources and simple
1-local sources are roughly equivalent, up to a factor of about s. In particular, using Definitions 7.2 and 7.4,
it is relatively straightforward to show: a simple 1-local source X over n bits with min-entropy Γ is also a
space s = 1 source over n bits with min-entropy Γ. Combining this with Lemma 7.7, we see that simple
1-local sources and space s sources are roughly equivalent (in the low-error convex combination sense), up
to a factor of Õ(s).

We are now ready to prove Lemma 7.7. We will use an intermediate type of source, called an independent
source sequence, which is a natural generalization of independent sources to allow for uneven (and un-
known) length. We will show that small-space sources are (close to) a convex combination of independent
source sequences, which are a convex combination of simple 1-local sources. We prove the latter first.

Definition 7.5 (Independent source sequence). A source X over {0, 1}n is an (n, r, k)-independent source
sequence if there exist some (unknown) lengths ℓ1, . . . , ℓr ∈ [n] that sum to n such that X = (X1, . . . ,Xr),
where each Xi is an independent (ℓi, k)-source.

While independent source sequences may not look like affine sources at first glance, it is actually easy
to show that they are not only convex combinations of affine sources, but in fact simple 1-local sources!

Claim 7.1 (A reduction from independent source sequences to 1-local sources). If X be an (n,Γ, 1)-
independent source sequence, it is a convex combination of simple 1-local sources with min-entropy Γ.

Proof. We previously showed in Lemma 3.20 that any source with min-entropy at least 1 is a convex com-
bination of 1-local sources with min-entropy exactly 1. Applying this to each independent source in the
sequence X immediately yields the result.

At last, we are finally ready to finish the proof of our reduction. We prove the following reduction
from small-space sources to independent source sequences, which immediately yields our reduction from
small-space sources to simple 1-local sources (Lemma 7.7) via Claim 7.1.

Lemma 7.8 (A reduction from small-space sources to independent source sequences). There is a universal
constant c > 0 such that the following holds. Let X ∼ {0, 1}n be a space s source of min-entropy k. Then
X is 2−ck-close to a convex combination of (n,Γ, 1)-independent source sequences, where Γ ≥ ck

s log(2n/k) .

Proof. Let W be the random walk over the width 2s, length n branching program that generates X =
(X1,X2, . . . ,Xn), and for each i ∈ [n], let Li be the vertex in layer i that is traversed by W. In other words,
(L1,L2, . . . ,Ln) is a random variable over [2s]n that lists the vertices visited by W in order (excluding the
start vertex). Furthermore, for any 1 ≤ i < j ≤ n, we define the slice X(i,j) := (Xi+1, . . . ,Xj).

For any indices 0 = i0 < i1 < · · · < iT = n, it is straightforward to verify that the slices
X(i0,i1),X(i1,i2), . . . ,X(iT−1,iT) become mutually independent when conditioned on fixing Li1 , . . . ,LiT−1

to any ℓi1 , . . . , ℓiT−1 . Furthermore, given such a fixing, if we can guarantee that T ′ of these slices still
have min-entropy at least 1 after this fixing, then the source X conditioned on this fixing must be an

136

(n, T ′, 1)-independent source sequence. This is simply because for each “good” slice with min-entropy 1,
we can just concatenate to it all slices preceding it (until we reach another good slice or the start of the
source), and for the last good slice with min-entropy 1, we can just concatenate to it all slices following
it (until we reach the end of the source). Thus, the goal of this proof is to pick layers Li to fix such that
with high probability over these fixings, we can make the abovementioned guarantee for the largest T ′

possible. By the law of total probability, this will immediately imply X is close to a convex combination of
(n, T ′, 1)-independent source sequences.

Let Γ, t be parameters that we will set later. Informally, we pick layers to fix in the following manner.
We split up the branching program into 2Γ slices, and fix the layers in between them. Then, we will argue
that with high probability, X still has most of its entropy, and so we must be in one of two situations:

(1) The Γ slices with the most entropy out of the 2Γ slices each have at least 1 bit of entropy, or

(2) They do not.

In case (1), X already looks like an (n,Γ, 1)-independent source sequence, and we are done. In case (2),
we know the entropy must be highly concentrated in the Γ highest entropy slices, and so we can recurse on
this sub-source that has half the size as the original source, but much more entropy. We will argue that it is
impossible to forever avoid case (1) in this recursion, by showing that otherwise we would eventually (after
at most t steps) find a sub-source with more entropy than its length, a contradiction. We will now describe
our fixings more formally.

Fixings We pick layers to fix as follows.14 We start by defining a set of indices I(0) that split the branching
program into 2Γ slices of the same size. Namely, we define indices 0 = i

(0)
0 < i

(0)
1 < · · · < i

(0)
2Γ−1 < i

(0)
2Γ =

n such that i(0)j − i
(0)
j−1 =

n
2Γ for all j ∈ [2Γ], and set I(0) := {i(0)j : j ∈ [2Γ− 1]}. We now fix (Li)i∈I(0) to

some string ℓ(0) ∈ [2s]2Γ−1.
In order to decide what to fix next, we construct a set B(0) of the slices induced by I(0), and we con-

struct a set A(0) ⊆ B(0) of the Γ highest entropy slices indexed by B(0), conditioned on the fixing we just
performed. More formally, we define B(0) = {(i(0)0 , i

(0)
1), (i

(0)
1 , i

(0)
2), . . . , (i

(0)
2Γ−1, i

(0)
2Γ)}. We now pick the

Γ largest elements from B(0) to create A(0), where largest is defined via the following total order: given
(a, b), (c, d) ∈ B(0), we say (a, b) > (c, d) if H∞(X(a,b) | (Li)i∈I(0) = ℓ(0)) > H∞(X(c,d) | (Li)i∈I(0) =
ℓ(0)); or if these min-entropies are identical and a > c. We now check the min-entropies of the slices in
A(0). If H∞(Xa | (Li)i∈I(0) = ℓ(0)) ≥ 1 for all a ∈ A(0), we stop our fixings here.

Otherwise, we proceed with more fixings. We initialize a counter τ = 1, and use (∗) to refer to the
current location of this text on this page (i.e., the beginning of a loop that we are creating). Then, we define
a set of indices I(τ) that split each of the good slices from the previous round of fixings. More formally, we
define I(τ) := {a1+a22 : (a1, a2) ∈ A(τ−1)}. We now fix (Li)i∈I(τ) to some string ℓ(τ) ∈ [2s]Γ.

In order to decide what to fix next, we construct a set B(τ) of the new slices induced by I(τ),
and we construct a set A(τ) ⊆ B(τ) of the Γ highest entropy slices indexed by B(τ), conditioned
on all of the fixings we have performed thus far. More formally, we define B(τ) = {(a1, a1+a22) :

(a1, a2) ∈ A(τ−1)} ∪ {(a1+a22 , a2) : (a1, a2) ∈ A(τ−1)}. We now pick the Γ largest elements from B(τ)

to create A(τ), where largest is defined via the following total order: given (a, b), (c, d) ∈ B(τ),
we say (a, b) > (c, d) if H∞(X(a,b) | (Li)i∈I(0) = ℓ(0), (Li)i∈I(1) = ℓ(1), . . . , (Lτ)i∈I(τ) =

14To reduce notation, we assume throughout the proof that all divisions yield positive integers. It is easy to extend the arguments
to handle when this is not the case.

137

ℓ(τ)) > H∞(X(c,d) | (Li)i∈I(0) = ℓ(0), (Li)i∈I(1) = ℓ(1), . . . , (Lτ)i∈I(τ) = ℓ(τ)); or if these
min-entropy are identical and a > c. We now check the min-entropies of the slices in A(τ). If
H∞(Xa | (Li)i∈I(0) = ℓ(0), (Li)i∈I(1) = ℓ(1), . . . , (Lτ)i∈I(τ) = ℓ(τ)) ≥ 1 for all a ∈ A, we stop our fixings
here. Also, if τ = t, we stop our fixings here. Otherwise, we increment τ ← τ + 1, and we go back to
(∗).15 This concludes our fixings.

Analysis For convenience, let Q denote a single random variable such that fixing Q is equivalent to
performing all of the fixings described above. Note that Q is a deterministic function of (L1, . . . ,Ln), and
is of the form (Li)i∈I , where I is not a single constant subset of [n], but is chosen adaptively. Furthermore,
observe that not all elements in the support of Q have the same length (depending on when the fixing of
layers stopped); indeed, Q is a random variable over [2s]2Γ−1 ∪ [2s]2Γ−1+Γ ∪ · · · ∪ [2s]2Γ−1+tΓ. However,
notice that for every q1, q2 ∈ support(Q), q1 is cannot be a prefix of q2; it is therefore straightforward to
construct an injection from support(Q)→ [2s]2Γ−1+tΓ, and so |support(Q)| ≤ 2s·((t+2)Γ−1) ≤ 2(t+2)sΓ.

Recall that we currently have parameters Γ, t that we said we would fix later. We will add ε to the
parameters that we will fix later. The goal now is to show that with probability 1 − ε over fixing Q to
q, the conditional distribution (X | Q = q) is an (n,Γ, 1)-independent source sequence, since this would
immediately imply X is ε-close to a convex combination of (n,Γ, 1)-independent source sequences. We
would like to show this holds for the best possible choices of Γ, ε, t.

We start by invoking Lemma 2.1, which tells us that with probability at least 1−ε over fixing Q to q, we
haveH∞(X | Q = q) ≥ k− log(|support(Q)|)− log(1/ε) ≥ k−(t+2)sΓ− log(1/ε). Consider now some
fixing Q = q where this holds. We know that there is some τ∗ ∈ {0, 1, . . . , t} such that q ∈ [2s]2Γ−1+τ

∗Γ,
where τ∗ simply counts the number of times we iterated through the fixing loop from above. Recall that by
definition, the fixing Q = q refers to the fixings (Li)i∈I(0) = ℓ(0), . . . , (Li)i∈I(τ∗) = ℓ(τ

∗).
Thus, by definition of our fixing procedure, the source X | Q = q is simply the concatenation of the

slices (X(β,β′)|Q = q), where (β, β′) ranges over the set

(B(0) \A(0)) ∪ (B(1) \A(1)) ∪ · · · ∪ (B(τ∗) \A(τ∗)) ∪Aτ∗ ,

and the concatenation happens in increasing order of β′. Also notice that the unions above are in fact disjoint.
Furthermore, given our discussion at the very beginning of the proof, we know that these slices are mutually
independent, because of the conditioning on the layers separating them. Now, we could be in one of two
cases: either τ∗ < t, or τ∗ = t.

Case (1): τ∗ < t. In this case, by definition of our fixing procedure, we know that the Γ distinct slices in
(X | Q = q) that are indexed byA(τ∗) each have min-entropy at least 1. Thus, (X | Q = q) is a sequence of
independent slices, with the guarantee that at least Γ of them have min-entropy at least 1. By our discussion
at the very beginning of this proof, (X | Q = q) is an (n,Γ, 1)-independent source sequence.

Case (2): τ∗ = t. In this case, observe that in our fixing procedure, we only proceed from iteration j to
j + 1 in the loop if some slice in A(j) has min-entropy < 1, which means that all slices in B(j) \ A(j) have
min-entropy < 1 (since A(j) contains the Γ slices with the highest min-entropy out of the 2Γ slices in B(j)).
Thus, for every (β, β′) ∈ (B(0) \A(0))∪ (B(1) \A(1))∪ · · · ∪ (B(τ∗−1) \A(τ∗−1)), we know H∞(X(β,β′) |
Q = q) < 1. (This was also true in the previous case, but we did not need this observation there.) For all
other (β, β∗) ∈ (B(τ∗) \ A(τ∗)) ∪ A(τ), it trivially holds that H∞(X(β,β′) | Q = q) ≤ β′ − β, since this
slice is just a random variable over β′ − β bits. It is straightforward to show that β′ − β = n

2Γ · 2
−τ∗ , since

our first slices B(0) divide the n bit source into 2Γ equal sized pieces, and A(0) ⊆ B(0), and at each iteration

15In order for this process to be well-defined, we should stop if there is a slice (a, b) ∈ A(τ) with b− a = 1. We will make sure
to set our parameter t to guarantee this.

138

j of the loop we cut each slice from A(j−1) in half to get B(j). Thus, H∞(X(β,β′) | Q = q) ≤ n
2Γ · 2

−τ∗ for
all (β, β∗) ∈ (B(τ∗) \A(τ∗)) ∪A(τ).

Thus, we know an upper bound on the entropy of each slice in (B(0) \ A(0)) ∪ (B(1) \ A(1)) ∪ · · · ∪
(B(τ∗−1) \ A(τ∗−1)) ∪ (B(τ∗) \ A(τ∗)) ∪ Aτ∗ . Furthermore, the sets in the union are disjoint, and each set
in this union contains Γ distinct slices, which we have already mentioned are mutually independent. Thus,
we have:

H∞(X | Q = q) < (1 + τ∗ − 1) · Γ · 1 + (1 + 1) · Γ ·
(n
2Γ
· 2−τ∗

)
= Γτ∗ + n · 2−τ∗

= Γt+ n2−t.

Combining this with the assumption we made about q near the beginning of our analysis, we have:

k − (t+ 2)sΓ− log(1/ε) ≤ H∞(X | Q = q) < Γt+ n2−t. (7.1)

We finally arrive at our last goal: setting parameters Γ, t, ε. We know that for any setting of these parameters
that contradicts Equation (7.1), Case (2) simply cannot occur. Thus, for any such setting, we know that
with probability 1 − ε over fixing Q = q, we have H∞(X | Q = q) ≥ k − (t + 2)sΓ − log(1/ε),
and this implies Case (1) must occur. In other words, with probability 1 − ε over q ∼ Q, we have that
(X | Q = q) is an (n,Γ, 1)-independent source sequence, which immediately implies that X is ε-close to a
convex combination of (n,Γ, 1)-independent source sequences.

So all that remains is to pick the best possible Γ, t, ε that contradict Equation (7.1), and in particular
show that our selected Γ, ε matches the claimed parameters in the theorem statement. We only have one
minor restriction in our freedom to pick these parameters. We briefly recall the footnote from our fixings
procedure, and note that the only requirement we have is that t is set so the procedure remains valid; namely,
so that for every τ ∈ [t] and (β, β′) ∈ B(τ) created by the fixing procedure, β′ − β ≥ 1, since this will
ensure that we are creating valid slices. Above, we showed that β−β = n

2Γ ·2
−τ , and so the only restriction

we have is that n
2Γ · 2

−t ≥ 1.
Thus, to complete the proof, we may pick any Γ, t, ε that satisfy the above restriction, while contradicting

Equation (7.1). In particular, these parameters just need to satisfy

k − (t+ 2)sΓ− log(1/ε) ≥ Γt+ n2−t, and
n

2Γ
· 2−t ≥ 1.

Combining these, we just require:

Γ ≤ min

{
k − n2−t − log(1/ε)

t · (s− 1) + 2s
,
n

2t+1

}
.

We take t := log(4n/k) and ε := 2−k/2 and Γ := k
20s·log(2n/k) to complete the proof.

This completes the construction of our two new extractors for small-space sources. Next, we will discuss
one interesting bonus application of these results.

139

7.4 Applications in complexity theory

Given that small-space sources fall into the category of low-complexity sources, it may not be surprising
to learn that our new extractor constructions have applications in complexity theory. What may be surpris-
ing, however, is that these applications do not directly come from our extractors, but instead come from
the structural result that we proved: namely, our reduction from small-space sources to 1-local sources
(Lemma 7.7). Using our reduction, we are able to prove an interesting new result on the power of read-once
branching programs (ROBPs) for the task of sampling from distributions. We go into more detail, below.

7.4.1 Complexity of sampling

Recently, a rich new subfield of complexity theory, called the complexity of sampling, has been the subject
of intense study. While classical complexity theory seeks to understand the power of various computational
models for the task of computing a Boolean function f : {0, 1}ℓ → {0, 1}n, the complexity of sampling
seeks to understand the power of these same models for the alternative task of sampling a distribution
Q ∼ {0, 1}n. More formally, we say that an instance of a computational model (e.g., a low-depth circuit)
F : {0, 1}ℓ → {0, 1}n samples the distribution Q if F (Uℓ) = Q. In Chapter 9, we give a comprehensive
overview of this exciting new area of study, and contribute some of our own results.

A key motivating paradigm behind research into the complexity of sampling is the fact that sampling
lower bounds are harder to obtain (and thus more desirable) than classical lower bounds. Indeed, for many
computational models, there exist explicit functions b : {0, 1}n → {0, 1} such that the map x 7→ (x, b(x))
is hard to compute, yet the distribution (Un, b(Un)) is easy to sample. This motivates researchers to seek
out simple functions b for which (Un, b(Un)) is hard to sample.

Sampling lower bounds against low-degree polynomials

A well-known result of Viola [Vio16] shows that there exist degree 2 polynomials b : Fn2 → F2 such that
AC0 circuits cannot sample (Un, b(Un)). As it turns out, by exploiting our new reduction from small-space
sources to 1-local sources (Lemma 7.7), we can obtain an analogous result for ROBPs (Definition 9.3):
the canonical model for space-bounded computation. In fact, we prove something that is stronger in two
notable ways. First, we prove sampling lower bounds against the entire spectrum of low-degree polynomials,
achieving a tradeoff between the degree of the polynomial and the complexity required of an ROBP that
can sample it. Second, our sampling lower bounds even work against distributions of the form (X, b(X)),
where X can be taken as any random variable with sufficient min-entropy - including, of course, the uniform
distribution. More formally, we prove the following.

Theorem 7.5 (Low-degree polynomials are hard to sample). There exists a universal constant c > 0 such
that for any n ≥ r ≥ 2 ∈ N, there exists a degree r polynomial b : Fn2 → F2 such that the following holds.
For any random variable X ∼ {0, 1}n with min-entropy k, there does not exist an ROBP of width

w ≤ exp

(
ck

r · (n log n)1/r · log(n/k)

)
that can sample (X, b(X)).

For the setting of degree 2 polynomials b : Fn2 → F2 and full min-entropy, Theorem 7.5 shows that

ROBPs of exponential width w ≤ 2Ω(
√
n/ logn) cannot sample (Un, b(Un)). It is straightforward to show

that ROBPs of width 2n can sample any such distribution, and thus our lower bounds are quite strong.

140

Even more notably, however, is the fact that ROBPs can compute (and thus sample) any degree 1 (linear)
polynomial b : {0, 1}n → {0, 1} in width 2. Thus, it is fascinating to note that increasing the degree from
r = 1 to r = 2 forces the width of the ROBP to jump from w = 2 all the way up to w = 2Ω(

√
n/ logn).

An overview of the proof

Let us now proceed to prove Theorem 7.5. In order to prove sampling lower bounds against distributions of
the form (Un, b(Un)) for a computational model F , the classic intuition is to try to set b to an extractor for
distributions that can be sampled by F . Almost by definition, this will imply that the uniform distribution
over b−1(0) or b−1(1) (whichever is bigger) cannot be sampled by F . However, it does not necessarily
imply that (Un, b(Un)) cannot be sampled by F . Indeed, if one tries to run this argument, the main issue
they will run into is the fact that even if a distribution Y ∼ {0, 1}n+1 can be generated by F , the same
is not necessarily true of the random variable Y′ := (Y | Yn+1 = y). Thus, there is little hope that one
can pursue a contradiction by fixing the last bit of Y to the more likely value y, and arguing that if Y truly
sampled (Un, b(Un)), then the existence of Y′ contradicts the fact that b extracts from F .

In order to circumvent the above issue, the key idea is to first reduce distributions samplable by F into
distributions corresponding to a simpler class, say F ′. If the class F ′ is simple enough, then it actually is
possible that the random variable Y remains in F ′, even upon fixing its last bit. Now, in order to execute
this plan to prove Theorem 7.5, we naturally set F to be the class of ROBPs, but what should we set b and
F ′ to? Well, we absolutely need b to be a low-degree polynomial, since these are the distributions claimed
to be hard in Theorem 7.5. As for F ′, we set it to the family of 1-local sources, as there is some hope that
distributions samplable by ROBPs look like small-space sources, which we know to be reducible to 1-local
sources via the key lemma from this chapter (Lemma 7.7). To make this plan work, all we need is to show
that ROBPs do indeed look like small-space sources, and that low-degree polynomials b can extract from 1-
local sources. As it turns out, we actually prove both such results in this thesis, and can thereby successfully
execute the above plan. This completes the proof overview of Theorem 7.5, which interestingly uses one
new ingredient from every chapter of this part of the thesis (Chapters 7 to 9).

A formal presentation of the proof

We can now proceed with the formal proof of Theorem 7.5. As suggested above, we use one new ingredient
from each chapter in Part III. The first ingredient we need is a reduction showing that any distribution
X ∼ {0, 1}n samplable by an ROBP looks like a small-space source of roughly the same size.

Lemma 7.9 (A reduction from ROBP samplers to small-space sources - Theorem 9.0, restated). For any
X ∼ {0, 1}n, if there is an ROBP of width w that samples X, then X is a space s = log(2w) source.

The second key ingredient we need is the main reduction underpinning the current chapter, which shows
that any small-space source is close to a convex combination of 1-local sources. By composing this with the
previous ingredient, we get that any distribution samplable by an ROBP looks like a 1-local source.

Lemma 7.10 (A reduction from small-space sources to 1-local sources - Lemma 7.7, restated). There is a
universal constant c > 0 such that the following holds. Let X ∼ {0, 1}n be a space s source of min-entropy
k. Then X is 2−ck-close to a convex combination of 1-local sources of min-entropy ck

s log(2n/k) .

Finally, the third key ingredient shows that (non-explicit) low-degree polynomials are great extractors for
1-local sources. Such a result is almost implied by a classic paper of Cohen and Tal [CT15]. However, they
prove that low-degree polynomials are good extractors for affine sources, and thus obtain slightly weaker
parameters (see Section 8.4.1 for a comparison).

141

Lemma 7.11 (Low-degree polynomials extract from 1-local sources - Theorem 8.2, specialized). There
exist constants C, c > 0 such that for all n ∈ N and 2 ≤ r ≤ c log n, the following holds. There exists a
degree r polynomial b : Fn2 → F2 that is an extractor for 1-local sources of min-entropy

k ≥ Cr · (n log n)1/r,

which has error ε = 2−ck/r.

Equipped with these three ingredients, we can finally prove that low-degree polynomials are hard to
sample by ROBPs (Theorem 7.5).

Proof of Theorem 7.5. Let b : {0, 1}n → {0, 1} be a degree r polynomial that is an extractor for 1-local
sources of min-entropy Γ ≥ Cr · (n log n)1/r which has error ε = 2−cΓ/r, as promised by Lemma 7.11,
and let X ∼ {0, 1}n be an arbitrary distribution of min-entropy k, where k is to be decided later. Let
Q ∼ {0, 1}n+1 be a distribution that is generated by an ROBP of width w, and parse Q as Q = (R,S) ∼
{0, 1}n × {0, 1}. Suppose for contradiction that Q ≡ (X, b(X)), and notice that this implies H∞(Q) = k.

Now, by combining Lemmas 7.9 and 7.10, we know that Q = (R,S) is 2−k
′
-close to a convex combi-

nation of 1-local sources Q′ = (R′,S′) that have min-entropy at least

k′ :=
ck

log(2w) · log(2(n+ 1)/k)
.

Furthermore, by the min-entropy chain rule (Lemma 2.1) and the fact that 1-local sources remain 1-local
even upon fixing a bit, we know that each Q′ = (R′,S′) is 2−k

′/2-close to a convex combination of 1-local
sources Q′′ = (R′′,S′′) such that S′′ is fixed and R′′ has min-entropy at least k′′ := k′/2 − 1. Putting
this all together, we get that Q is 2−k

′′
-close to a convex combination of 1-local sources Q′′ = (R′′,S′′) ∼

{0, 1}n+1 such that S′′ is fixed and R′′ has min-entropy at least

k′′ =
ck

2 log(2w) · log(2(n+ 1)/k)
− 1.

Now, define k so that k′′ ≥ Cr · (n log n)1/r. Then we know that b in fact extracts from each R′′ defined
above with error ε = 2−ck

′′/r, and thus since S′′ is constant, we have

Pr[b(R′′) ̸= S′′] ≥ 1

2
− ε.

By the closeness of Q = (R,S) to this convex combination of such sources, we get that

Pr[b(R) ̸= S] ≥ 1

2
− ε− 2−k

′′ ≥ 1

2
− 2−c1k

′′/r

for some constant c1 > 0. But at the very beginning we assumed that (R,S) ≡ (X, b(X)), which means
that Pr[b(R) ̸= S] = 0. Thus, we arrive at a contradiction because c1k′′/r > 1 and thus 1

2 − 2−c1k
′′/r > 0

by our setting of k′′. Finally, recall that this setting of k′′ (which yielded the contradiction) came about by
fixing k so that

ck

2 log(2w) · log(2(n+ 1)/k)
− 1 ≥ Cr · (n log n)1/r.

Solving for w and resetting constants appropriately yields

w ≤ exp

(
ck

r · (n log n)1/r · log(n/k)

)
,

as desired.

142

7.5 Future directions

In this chapter, we gave two new-and-improved extractors for small-space sources: one in the high-error
regime (Theorem 7.1) and one in the low-error regime (Theorem 7.2). While our new low-error extractors
for small-space sources were a direct consequence of the adversarial source extractors we constructed in
Chapter 3, our new high-error extractors (which achieve polylogarithmic min-entropy) precipitated from a
brand new reduction from small-space sources to affine sources (Lemma 7.1). Following our work, further
exciting progress on small-space sources has been achieved. In a recent paper [CL22], Chattopadhyay and
Liao improved the above structural result by showing that there is an even more efficient reduction from
small-space sources to sumset sources, a model which naturally generalizes affine sources. Even more
recently [Li23], Li gave a breakthrough construction of sumset extractors that can handle truly logarithmic
min-entropy. Thus, combining these two results, one immediately obtains high-error small-space extractors
for truly logarithmic min-entropy. Despite this amazing progress, many natural questions around small-
space sources remain open. We outline two of them, below.

Improved low-error extractors for simple 1-local sources While we now know how to extract from
small-space sources with truly logarithmic min-entropy, these extractors have high error. In the low-error
regime, the best extractors still require over k ≥

√
n bits of min-entropy. Since low-error extractors are

crucial for most applications in cryptography [DOPS04], it is important that we make further progress on
this min-entropy requirement. Using our new reduction to affine sources, any significant improvement to the
state-of-the-art in low-error affine extraction would immediately yield new low-error extractors for small-
space sources. Notably, however, such an affine extractor isn’t even needed! Indeed, recall that our structural
result actually reduces small-space sources to simple 1-local sources (Lemma 7.7), which are much more
basic than full-blown affine sources. Surely, it seems like it should be easier to construct low-error extractors
for this model. However, to date, no progress has been made on this tantalizing problem.

Extractors for read-k small-space sources Another natural direction is to construct extractors for sources
that more realistically correspond to small-space computation. In particular, recall that one of the original
motivating factors for extracting from samplable sources (of which small-space sources are a special case)
was the belief that they might actually model distributions found in nature [TV00]. However, as we will
see in Chapter 9, small-space sources only correspond to distributions samplable by read-once branching
programs (ROBPs), which may not be a realistic model for distributions in nature. In particular, while these
programs remain one of the most classical ways to model space-bounded computation, they are inherently
limited: as per their name, ROBPs are only allowed to read each bit in their input once. Because of this,
it is natural to study a generalization of ROBPs that can read each bit in their input k times. These objects
are known as read-k branching programs (RkBPs), and have received a substantial amount of attention
in classical complexity theory [BRS93, Tha98, BJS01]. To date, however, there has yet to be a study on
extracting from distributions generated by RkBPs. It would be great to develop such a theory, given that
small-space sources already capture a variety of well-studied models.

143

144

Chapter 8

Extractors for circuit sources

We now turn from small-space sources to circuit sources. While both of these models belong to the family of
low-complexity sources, circuit sources were the original model studied in the seminal paper of Trevisan and
Vadhan [TV00]. The definition of these sources is simple: a circuit source X is just a distribution that can
be generated by feeding uniform bits into a Boolean circuit. By restricting the power (size, depth, etc.) of
the circuit in various ways, one can study a variety of different flavors of circuit sources. The most popular
flavor, however, is the model of local sources.

A local source X is simply a source where each bit depends on a small number of (hidden) uniformly
random input bits. This model was first introduced by De and Watson [DW12] and Viola [Vio14], and
has since established its role as a central figure in the world of circuit sources. Indeed, local sources not
only generalize sources samplable by NC0 circuits, but they also capture sources generated by AC0 circuits
and even read-once branching programs. In other words, extractors for local sources also work for sources
generated by these classical computational models.

Despite being introduced over a decade ago, little progress has been made on improving the entropy
requirement for extracting from local sources. The current best explicit extractors require min-entropy
k ≥

√
n, and follow via a reduction to affine extractors. To start, we prove a barrier result showing that

one cannot hope to improve this entropy requirement via a black-box reduction of this form. Given this
impossibility result for black-box affine extractors, we turn our attention to a simple family of functions that
are known to perform as excellent white-box affine extractors: low-degree polynomials (over F2). We ask,

Can this simple family of functions help break the
√
n barrier?

In this chapter, we answer the above question in the positive, and fully characterize the power of low-
degree polynomials as extractors for local sources. More precisely, we show that a random degree r polyno-
mial is a low-error extractor for n-bit local sources with min-entropy k ≥ O(r(n log n)1/r), and we show
that this is tight. Our result leverages several new ingredients, which may be of independent interest. Our
positive result relies on a new explicit reduction from local sources to a more structured family, known as
local non-oblivious bit-fixing sources. To show its tightness, we prove a new type of Chevalley-Warning
theorem, which guarantees the existence of low-weight solutions to systems of low-degree polynomials.

The results presented in this chapter are based on the following joint work:

• [ACG+22] Omar Alrabiah, Eshan Chattopadhyay, Jesse Goodman, Xin Li, and João Ribeiro. Low-degree polynomials
extract from local sources. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022),
volume 229 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022

145

8.1 Introduction

As we have seen, the model of samplable sources (within the broader family of low-complexity sources)
is a rich setting in which to study seedless extraction.1 In the previous chapter, we explored one half of
this setting, by studying sources samplable in limited space. In this chapter, we explore the other half of
this setting, by studying sources samplable in limited time. As always, the ultimate goal is to construct an
extractor, so let’s kick things off with this familiar definition.

Definition 8.1 (Extractor). Let X be a family of distributions over {0, 1}n. A function Ext : {0, 1}n →
{0, 1}m is called an extractor for X with error ε if for every X ∈ X ,

|Ext(X)−Um| ≤ ε.

In order to model a source X ∈ X that is samplable in limited time, the most traditional approach might
be to use a Turing machine. Indeed, this has historically been the most classical way to model computation.
In the world of complexity theory, however, Boolean circuits have gradually emerged as the model of choice,
as their simple definition and combinatorial nature make them much easier to reason about [AB09]. The
same is true in the world of extractors, and more specifically, in the study of samplable sources. In particular,
while some work (on sources samplable in limited time) does study Turing machines [Vio12b], most of the
work on this subject focuses on circuits [TV00, DW12, Vio14, Li16, ACG+22]. In this chapter, we continue
this trend, and study circuit sources.

Circuit sources A circuit source X ∼ {0, 1}n is simply a source of the form f(Uℓ) for some function f
coming from a “low-complexity” circuit class C.2 As it turns out, this was the original model considered
by Trevisan and Vadhan in their founding paper on samplable sources [TV00]. There, they prove that such
sources are, in fact, extremely difficult to extract from. In particular, they show that any explicit extractor
for sources generated by relatively small circuits would break longstanding barriers in circuit lower bounds.
Given this result, they focus instead on constructing extractors under complexity-theoretic assumptions.
Under these assumptions, they successfully extract from sources of min-entropy k ≥ 0.99n that are sampled
by circuits of polynomial size.

If one hopes to unconditionally extract from circuit sources, it seems all-but-necessary to consider more
restricted circuit classes C. In particular, while the circuits studied above had a restriction on their size, one
might also consider restricting their depth. This leads us to two of the most well-known circuit classes in
complexity theory.

• NC0 circuits, which have constant depth, polynomial size, and consist of AND,OR, and NOT gates
of fan-in at most 2.

• AC0 circuits, which have constant depth, polynomial size, and consist of AND,OR, and NOT gates
of unbounded fan-in.

Given these circuit classes, we can now define two interesting families of circuit sources that may actu-
ally yield (unconditional) explicit extractors. In particular, we can define NC0 sources to be of the form
X = f(Uℓ) for an NC0 circuit f , and we can define AC0 sources analogously. In the years following the
original paper of Trevisan and Vadhan [TV00], all work on circuit sources has focused on (unconditionally)
extracting from these families [DW12, Vio14, Li16, ACG+22].3

1We remind the reader that a full backstory on this model is provided at the beginning of Chapter 7.
2Here and throughout, there won’t be any restriction on the number ℓ of random bits fed as input to the circuit. Instead, the

“complexity” of the circuit class will be in terms of the number n of bits output by the circuit.
3This is not to mention recently heard whispers of an exciting follow-up to [TV00] coming soon [BDSGM23].

146

From circuit sources to local sources The first to consider extracting from NC0 and AC0 sources were
De and Watson [DW12] and Viola [Vio14]. While the former work focuses on NC0 sources [DW12] and
the latter studies both NC0 and AC0 sources [Vio14], they both construct (unconditional) explicit extractors
via the same key idea. Namely, they introduce a fundamental new model known as local sources, and focus
on extracting from that, instead. This new model is defined as follows.

Definition 8.2 (Local source). A source X ∼ {0, 1}n is called a d-local source if there exists some ℓ ∈ N and
a function g : {0, 1}ℓ → {0, 1}n such that each output bit depends on at most d input bits, and X = g(Uℓ).

Despite this exceptional simplicity, local sources generalize both NC0 and AC0 sources. For NC0

sources, this is not hard to see: indeed, upon staring at Definition 8.2, it becomes clear that O(1)-local
sources are identical to NC0 sources. For AC0 sources, the connection is much less obvious. However,
Viola provided a beautiful argument [Vio14] showing that AC0 sources can also be reduced to O(1)-local
sources, and this reduction comes at a very small loss in min-entropy (Lemma 8.14). Moreover, if you’re
willing to lose just a little more (Lemma 8.3), these reductions can actually be pushed all the way to 1-local
sources [DW12, Vio14] - meaning that even a humble extractor for 1-local sources works for NC0 and AC0!
All of this is to say:

If you wish to extract from NC0 and AC0 circuit sources,
it suffices to extract from local sources, instead.

In fact, given the simplicity of Definition 8.2 and the connections highlighted above, it becomes apparent
that local sources may actually be the more fundamental model. Indeed, even for the case of 1-local sources,
extractors for this model can not only handle NC0 sources and AC0 sources (as discussed above), but also
small-space sources (Lemma 7.7), oblivious bit-fixing sources (Part II), and - of course - the classical sources
of von Neumann [vN51]. For d-local sources of higher locality d > 1, the connection to circuit sources only
grows stronger (Lemma 8.14), along with their ability to unlock exciting new applications in complexity
theory (Section 8.6). Thus, following in the footsteps of the work that comes before us [DW12, Vio14, Li16],
this chapter will focus on extracting from local sources.4

Prior constructions As always, the holy grail is to construct a great explicit extractor. Unfortunately, it
is deceptively hard to extract from local sources. Even for the most basic setting of 1-local sources, sur-
prisingly little is known. Indeed, while any affine extractor (Chapter 6) can be used to extract from 1-local
sources, this is essentially the only known approach for doing so.5 This is not an issue in the high-error
regime, as we now have affine extractors for min-entropy k ≥ log1+o(1)(n) with constant error (The-
orem 6.1). In the low-error regime, however, the best known affine extractors [Bou07, Yeh11, Li11b]
still require very high min-entropy k ≥ O(n/

√
log log n). Luckily, Rao’s low-weight affine extractor

[Rao09b, DW12, Vio14] can partially come to the rescue here, and extract (with low error) from 1-local
sources of slightly less min-entropy k ≥ O(n0.51).6 Beyond this, however, nothing else is known.

The situation only gets worse when we move to higher locality. Even for the setting of 2-local sources,
there is a giant gap between what is possible existentially and explicitly. Non-explicitly, it is not hard to show
that there exist extractors for extremely low entropy k ≥ O(log n) with extremely low error ε = 2−Ω(k).
Explicitly, on the other hand, the current best extractors for 2-local sources are as follows.

4For posterity, we will also provide in Section 8.5 the consequences of our results in the worlds of NC0 and AC0.
5This is concerning, as 1-local sources seem significantly simpler than general affine sources.
6This is because a 1-local source of min-entropy k is a convex combination of affine sources of min-entropy k/2 and weight

2n/k. Thus, Rao’s low-weight affine extractor (Chapter 6) will work as long as (2n/k) ≤ (k/2)0.99, or rather k ≥ O(n0.51).

147

• The low-error setting: There exist explicit extractors for min-entropy k ≥ O(n0.67) [DW12, Vio14].

• The high-error setting: There exist explicit extractors for min-entropy k ≥ O(n0.51) [Li16].

Indeed, unlike the situation for 1-local sources, the best-known high-error explicit extractor for 2-local
sources still has a huge min-entropy requirement of k ≥ O(n0.51).7 In fact, this is one of the worst min-
entropy requirements in the entire world of seedless extraction,8 despite the fact that 2-local sources seem
so simple, and were introduced over a decade ago. What gives?

A barrier for known techniques If one were to venture into the actual techniques that underlie any
explicit extractor for local sources, they would come to find that they all rely on the same key tool: a
reduction to affine sources. This reduction, first obtained by De and Watson [DW12] and Viola [Vio14],
shows that any O(1)-local source of min-entropy k is close to a convex combination of affine sources of
min-entropy Ω(k2/n) (Theorem 8.4). Given this result (and the best-known affine extractors), it begins
to become clear why we know how to extract from local sources with min-entropy just above k ≥

√
n.

However, it should also be clear that this reduction cannot possibly lead to local source extractors for min-
entropy k <

√
n. It is natural to wonder whether this “

√
n barrier” is an artifact of this specific reduction, or

whether every possible reduction to affine sources will encounter this same barrier. This raises the question,

Can affine extractors be used to extract from local sources with min-entropy k <
√
n?

One reason to believe this may be true is our result from the previous chapter (Lemma 7.1), which shows
that affine extractors can handle small-space sources with min-entropy as low as k = polylog n. Thus, one
may hope a similar result can be established for local sources, which represent the “other half” of samplable
sources. Unfortunately, we start this chapter by proving (in Section 8.3) that this is not the case.

Theorem 8.0 (Barrier result). It is not possible to extract from 2-local sources with min-entropy k <
√
n by

applying an affine extractor in a black-box manner.9

Given this result, it becomes clear that if we wish to break this
√
n barrier, new techniques will be needed.

Towards breaking the barrier with new techniques While Theorem 8.0 tells us that black-box affine
extractors have reached their limit in local source extraction, it does not say the same about white-box affine
extractors. That is, Theorem 8.0 just claims that an affine extractor Ext cannot be proven to extract from local
sources of min-entropy k <

√
n using the extractor property alone.10 However, it is still totally possible

that the specific function Ext used above actually can extract from local sources of min-entropy k <
√
n,

but that this must be proven using a completely different argument (making no mention of affine sources).
While this might sound ridiculous, it actually happens all the time in extractor theory.11 Indeed, it seems
that certain functions exhibit strong enough pseudorandom properties that they can extract from multiple
unrelated models at once. So, where should we look for such functions? Even if we stay within the realm

7Technically, this can be reduced to k ≥ O(n1/2 logn) by combining Theorem 8.4 with our new affine extractor (Theorem 6.1).
8To the best of our knowledge, the only other (well-studied) models with worse min-entropy requirements in the high-error

regime are polynomial sources, variety sources (Part II), and other challenging recognizable sources (Part III).
9More formally, we show that there exists a 2-local source of min-entropy k ≥

√
n that is extremely far from a convex

combination of affine sources of min-entropy ≥ 6 (Theorem 8.5). This is fueled by a simple observation that the set of symmetric
matrices in Fn×n

2 of rank at most one form a perfect Sidon set (Lemma 8.4).
10Here, by extractor property, we mean the guarantee that Ext(X) is close to uniform for any big enough affine source X.
11As an example, consider the inner product (mod 2) function, which extracts from both independent sources (Chapter 3) and

affine sources (Chapter 6), despite the fact that there is no black-box reduction in either direction.

148

of affine extractors, we saw in Chapter 6 that there are a huge number of different constructions. Which one
of these should we try?

As it turns out, many of these constructions share a common theme: the use of low-degree polynomials.
Indeed, while some of them heavily depend on the use of low-degree polynomials [Li11b], others are low-
degree polynomials themselves [BSHR+01, Bou07, BSK12]. In fact, Cohen and Tal [CT15] even proved
that a random low-degree polynomial (over F2) is, with high probability, an excellent affine extractor. Look-
ing at these constructions, a clear candidate emerges for a specific family of functions that might help us
break the

√
n barrier in local source extraction. Inspired by the work of Cohen and Tal, we ask the following.

Question 8.1. Can (random) low-degree polynomials extract from local sources with min-entropy k <
√
n?

This is the main question we seek to answer.

Why random low-degree polynomials?

While explicit extractors that break the
√
n barrier for local sources are the end goal, answering Question 8.1

could very well be the next best thing. In fact, this question seems interesting in its own right, as it not only
has consequences in the world of extractors, but also in complexity theory and algebra.

Extractors Within the world of extractors, a positive answer to Question 8.1 could be viewed as a par-
tial derandomization or a semi-explicit construction. In particular, while a straightforward application of
the probabilistic method can produce excellent local source extractors using 2n random bits, a positive an-
swer to Question 8.1 would provide a way to do so using just nO(1) random bits. Furthermore, a random
construction based specifically on low-degree polynomials seems particularly conducive towards further de-
randomization, as these objects can naturally be interpreted as hypergraphs, which may be open to analysis
via the tools and intuition of combinatorics. Finally, as we will soon see, the pursuit of Question 8.1 likely
requires the development of new machinery that could be useful in future explicit constructions.

Complexity theory Moving to the world of complexity theory, Question 8.1 may eventually help us es-
tablish better fine-grained lower bounds (as advocated for in, e.g., [HHTT23]). In more detail, since this
question asks whether low-degree polynomials can extract from local sources, it is effectively asking whether
local-source extractors belong to a specific low-complexity class C. Since extractors are known to witness the
best-known lower bounds for several complexity classes C′ [CS16b, LY22], a positive answer to Question 8.1
(combined with an efficient derandomization) could lead to more fine-grained lower bounds of the form
C′ ̸⊆ C instead of C′ ̸⊆ P (where P denotes the class of poly-time algorithms). More generally, however, the
existence of low-complexity extractors is a fascinating question in its own right, which has received a lot of
interest over the years [Lu04, Vad04, Vio05, BG13, CT15, GVW15, CL18, CZ18, DY21, HIV22, ACG+22].

Algebra Finally, from an algebraic point of view, Question 8.1 could provide deep insight into the struc-
ture of low-degree polynomials. Indeed, by asking whether low-degree polynomials extract from local
sources, we are effectively asking about the structure of their solution sets. While there is an entire field of
mathematics dedicated to this question (algebraic geometry), two beautiful works have considered it through
the lens of extractors [BEHL12, CT15]. Most recently, Cohen and Tal [CT15] showed that a random degree
r polynomial12 extracts from affine sources with min-entropy k ≥ O(rn

1
r−1), and that this is tight.13 In our

quest to answer Question 8.1, we seek out a local source analog of this result.
12Formally, a random degree r polynomial p : Fn

2 → F2 includes each monomial of size at most r with probability 1/2.
13In other words, they characterized the size of the largest affine subspace in the solution set of such polynomials.

149

8.2 Our results

In this chapter, we fully characterize the power of low-degree polynomials as extractors for local sources,
answering Question 8.1 and providing a local source analog of Cohen and Tal [CT15]. Our characterization
relies on two new structural results: one for local sources, and one for low-degree polynomials. These key
new ingredients may be of independent interest, as the former can be used in future explicit constructions,
while the latter provides interesting insight into the solutions of systems of low-degree polynomials.

The main result

As hinted at above, our main result gives a tight characterization of the power of low-degree polynomials as
extractors for local sources. We prove the following.

Theorem 8.1 (Low-degree polynomials extract from local sources). For every d ∈ N there exist constants
C, c > 0 such that for all n ∈ N and 2 ≤ r ≤ c log n, the following holds. A random degree r polynomial
f : Fn2 → F2 is a 2−ck/r-extractor for d-local sources of min-entropy

k ≥ Cr · (n log n)1/r,

except with probability at most 2−(
ck
≤r). On the other hand, for every degree r polynomial g : Fn2 → F2 there

exists a d-local source of min-entropy
k ≥ cr · (n log n)1/r

on which it is constant.

More concisely, Theorem 8.1 shows that a random degree r polynomial extracts from local sources of
min-entropy k ≥ O(r(n log n)1/r), and that this is tight. In particular, this means that degree 3 polynomials
are already enough to extract from min-entropy k ≥ O((n log n)1/3), answering Question 8.1 and (non-
explicitly) breaking the

√
n min-entropy barrier of previous techniques (Theorem 8.0). Furthermore, given

the known reduction from AC0 sources to local sources [Vio14], it also follows that low-degree polynomials
break the

√
n barrier in extracting from this classical circuit family. In more detail, Theorem 8.1 immediately

implies that degree r polynomials extract from AC0 sources with min-entropy k ≥ O(n
1
r
+δ) for any constant

δ > 0, which is tight up to the removal of δ (Theorem 8.15). Finally, it turns out that our main result has
interesting consequences in the complexity of sampling, a rich new subfield of complexity theory. Here,
we show (in Section 8.6) that our main theorem yields an alternative proof and generalization of a classical
result of Viola [Vio16].

The upper bound

While Theorem 8.1 is stated for constant locality d, we actually prove stronger results that work for su-
perconstant d. In particular, Theorem 8.1 immediately follows from two separate (and more technical)
theorems we prove, which provide an upper bound and lower bound on the entropy required to extract from
d-local sources using degree r polynomials (where d need not be constant). We start with the upper bound.

Theorem 8.2 (Theorem 8.1, upper bound). There exist constants C, c > 0 such that for all n, d ∈ N and
2 ≤ r ≤ c log n, the following holds. A random degree r polynomial f : Fn2 → F2 is a 2−ck/(r2

dd2)-extractor
for d-local sources of min-entropy

k ≥ Cr · 2dd2 · (2dn log n)1/r,

150

except with probability at most 2−(
ck/(2dd2)

≤r).

In order to prove this result, the key new ingredient we exploit is a new structural result for d-local
sources. In particular, we show that such sources are close to a convex combination of sources coming
from a more structured family, called d-local non-oblivious bit-fixing (NOBF) sources. Informally, a d-local
NOBF source X ∼ {0, 1}n of min-entropy k is simply a source that contains k uniform independent bits,
with the remaining n− k bits depending on up to d of these k “good” bits each. We prove the following.

Lemma 8.1 (A reduction from d-local sources to d-local NOBF sources). There exists a constant c > 0
such that the following holds. Let X ∼ {0, 1}n be a d-local source of min-entropy k. Then X is 2−ck

′
-close

to a convex combination of d-local NOBF sources of min-entropy k′, where

k′ ≥ ck

2dd2
.

Previously, it was known that d-local sources can actually be reduced to 1-local NOBF sources [DW12,
Vio14], but this reduction suffers a prohibitively large loss in min-entropy (Lemma 8.3). Indeed, it was this
exact reduction that was responsible for the

√
nmin-entropy barrier that we lamented above. In Lemma 8.1,

we show that by reducing to a slightly richer class of sources, we can save a huge amount of min-entropy,
and circumvent this barrier. Indeed, by combining our reduction with a classical result on the bias of random
low-degree polynomials [BEHL12], our upper bounds (Theorem 8.2) almost immediately follow.

The lower bound

We now turn towards our lower bound on the entropy required to extract from local sources using low-degree
polynomials, which provides the second half of Theorem 8.1. We prove the following.

Theorem 8.3 (Theorem 8.1, lower bound). There exists a constant c > 0 such that for all n, d ∈ N and
2 ≤ r ≤ c log n such that d ≤ n

1
r−1
−2−10r

/ log n, the following holds. For every degree r polynomial
g : Fn2 → F2 there exists a d-local source of min-entropy

k ≥ cr · (dn log n)1/r

on which it is constant.

In order to prove this result, we actually show that the lower bound holds for a special class of d-
local sources known as d-local affine sources. A d-local affine source X ∼ Fn2 is simply an affine source
whose underlying subspace admits a basis v1, . . . , vk ∈ Fn2 where each coordinate i ∈ [n] is set to 1 in
at most d of these vectors. For this special class of sources, our lower bound is actually completely tight
(Theorem 8.9), and can be viewed as a “local” version of the classical result (Theorem 8.7) of Cohen and
Tal [CT15]. Finally, in order to prove our lower bound, the key new ingredient we exploit is the following
“low-weight” Chevalley-Warning theorem, which shows that any small system of low-degree polynomials
admits a (nontrivial) solution of low Hamming weight.

Lemma 8.2 (A low-weight Chevalley-Warning theorem). Let {fi : Fn2 → F2} be a set of polynomials
of linear degree14 at most D and nonlinear degree15 at most ∆, such that 0 is a common solution and
D +∆ < n. Then there is a common solution x ̸= 0 of Hamming weight

w ≤ 8D/ log(n/D) + 8∆ + 8.
14The linear degree is the sum of the degrees of the fi’s which have degree 1.
15The nonlinear degree is the sum of the degrees of the fi’s which have degree at least 2.

151

To help digest this result, we note that proving Theorem 8.3 requires showing that a system of low-
degree polynomials admits a low-weight solution. If the degrees of these polynomials sum to D, then the
classical Chevalley-Warning theorem [War36] guarantees the existence of a weight w ≤ O(D) solution. On
the other hand, if all of the polynomials in the system are guaranteed to be linear, then the Hamming bound
(from coding theory) can be applied to obtain the improvement w ≤ O(D/ log(n/D)). Our low-weight
Chevalley-Warning theorem (Lemma 8.2) shows that you can still get some of these improvements, even if
some of the polynomials in the system are nonlinear. This is crucial in proving Theorem 8.3, and we hope it
might find applications elsewhere.

Organization

We start by revisiting the power and limitations of black-box affine extractors in local source extraction,
in Section 8.3. There, we recall the well-known reduction from local sources to affine sources of De and
Watson [DW12] and Viola [Vio14], and we prove our barrier result (Theorem 8.0) showing this black-box
reduction cannot be improved. In Section 8.4, we turn to consider white-box affine extractors. First, in
Section 8.4.1, we motivate the use of low-degree polynomials as extractors, by recalling how they perform
in other classical settings. Then, in Section 8.4.2, we turn to prove our upper bounds on the entropy required
to extract from local sources using low-degree polynomials. We start with our reduction from d-local sources
to d-local NOBF sources (Lemma 8.1), from which our upper bounds (Theorem 8.2) easily follow. After
that, we turn to Section 8.4.3. There, we prove our low-weight Chevalley-Warning theorem (Lemma 8.2),
and show that it yields our lower bounds (Theorem 8.3) without too much additional trouble. By combining
our lower bounds and upper bounds, we immediately obtain our main theorem (Theorem 8.1). Finally, we
demonstrate the impact of this theorem on NC0 and AC0 sources in Section 8.5, discuss applications in the
complexity of sampling in Section 8.6, and conclude with some open problems in Section 8.7.

8.3 Do black-box affine extractors suffice?

As we saw in Chapter 6, affine extractors are powerful objects in extractor theory, capable of extracting in
a black-box manner from a host of seemingly unrelated models. Thus, to begin our quest of constructing
better extractors for local sources, it is only natural to revisit the capacity of affine extractors in this setting.

8.3.1 Entropy upper bounds: a reduction from d-local sources to 1-local NOBF sources

When local sources were first introduced [DW12, Vio14], it was observed that they cannot easily be broken
into independent chunks, unlike many of the models in seedless extraction at that time. This was a key piece
of evidence that local sources were a completely different beast than what had been dealt with before. Thus,
it came as a big surprise that, nevertheless, local sources can be broken down into a different fundamental
model from the field: affine sources. In their founding papers on local sources, De and Watson [DW12] and
Viola [Vio14] showed that every O(1)-local source X ∼ {0, 1}n of min-entropy k can be broken down into
affine sources with min-entropy Ω(k2/n). They proved the following.

Theorem 8.4 (Black-box affine extractors can extract from local sources [DW12, Vio14]). For every d ∈ N
there exists a constant c > 0 such that the following holds. Let X ∼ {0, 1}n be a d-local source of min-
entropy k. Then X is 2−k

′
-close to a convex combination of affine sources of min-entropy k′, where

k′ ≥ ck2/n.

152

In fact, De, Watson, and Viola actually showed that local sources can be reduced to an even more basic
model: local sources, themselves! They obtained the following fine-grained result, which shows that any
d-local source can be turned into a 1-local NOBF source, by paying a relatively modest price in min-entropy.

Lemma 8.3 (A reduction from d-local sources to 1-local NOBF sources [DW12, Vio14]). There exists a
constant c > 0 such that the following holds. Let X ∼ {0, 1}n be a d-local source of min-entropy k. Then
X is 2−k

′
-close to a convex combination of 1-local NOBF sources of min-entropy k′, where

k′ ≥ max

{
ck

(2dd2) · (n/k)
,

ck

(d3/ log d) · (n/k)2 log(n/k)

}
.

This reduction is extremely powerful, and used to construct all known extractors for local sources. How-
ever, staring at the parameters above, one might notice that a fundamental barrier is baked into Lemma 8.3.
In particular, even for 2-local sources, the above reduction cannot possibly be used to extract from min-
entropy below k =

√
n, since it may turn such a source into a 1-local source with no min-entropy at all. It is

natural to ask if this is an artifact of the reduction, or whether this is truly a fundamental barrier in black-box
affine extraction from local sources. Indeed, the case gets even more mysterious when one considers our
reduction from small-space sources to 1-local sources in the previous chapter (Lemma 7.7), which exhibits
no such barrier. Thus, one might think there is hope to further improve Lemma 8.3.

8.3.2 Entropy lower bounds: a big 2-local Sidon set from low-rank symmetric matrices

As it turns out, the reduction of De, Watson, and Viola is, unfortunately for us, almost completely tight. As
our first small result of this chapter, we prove the following, which shows that black-box affine extractors
cannot be used to extract from local sources with min-entropy below k =

√
n.

Theorem 8.5 (Black-box affine extractors cannot extract from local sources - Theorem 8.0, formal). There
is a 2-local source X ∼ {0, 1}n with min-entropy k ≥

√
n that is (1/2)-far from a convex combination of

affine sources with min-entropy 6.

In order to prove this result, we show that 2-local sources can perfectly sample a big Sidon set. A Sidon
set S ⊆ Fn2 is a fundamental object from additive combinatorics, which the property that for any u ̸= v ∈ S
and x ̸= y ∈ S with {u, v} ̸= {x, y}, it holds that u + v ̸= x + y. In other words, all pairs of elements
in S that can sum to distinct elements do sum to distinct elements, and the set S blows up under addition.
At a high-level, this means that a Sidon set has the opposite behavior of a subspace, which is closed under
addition, and thus does not blow up at all. This is the key idea in proving Theorem 8.5. So without further
ado, let us prove it. We start by presenting a simple “local-looking” object that is a Sidon set.

Lemma 8.4. The setM := {vvT : v ∈ Fn2} of symmetric matrices of rank at most one is a Sidon set.

Proof. By definition, to show thatM is a Sidon set, we must show that distinct pairs of elements sum to
distinct values. In other words, we must show that for any u ̸= v ∈ Fn2 and x ̸= y ∈ Fn2 ,

uuT + vvT = xxT + yyT =⇒ {u, v} = {x, y}.

Towards this end, define the matrices A := uuT + vvT and B := xxT + yyT . Let’s now look at the matrix
A. Let support(u) := {i ∈ [n] : ui = 1} denote the support of u and let support(v) denote the same
quantity for v. Clearly support(u) ̸= support(v), since u ̸= v. Using this observation, it can be verified that
the column space of A is precisely span(u, v). For the same reason, the column space of B is span(x, y).

153

By the argument above, we know that uuT + vvT = xxT + yyT =⇒ A = B =⇒ span(u, v) =
span(x, y), since two identical matrices must clearly have the same column space. All that remains is to
show that this further implies {u, v} = {x, y}. First, notice that this is easy when one of the elements in
u, v, x, y is 0: In this case, suppose, without loss of generality, that u = 0. Then span(u, v) = {0, v}.
Now, in order to maintain the condition that span(u, v) = span(x, y), it must clearly hold that {x, y} has
one element that is zero (so as to not contradict dimension), while the other element must be v (so that the
spaces are equal). In other words, we have {u, v} = {0, v} = {x, y}, as desired.

We may now assume that none of the elements in u, v, x, y are zero. Since span(u, v) = span(x, y) and
none of the elements are zero, we know that {x, y} can either be {u, v}, {u, u+ v}, or {v, u+ v}. Consider
the case {x, y} = {u, u+ v}. Since we know that uuT + vvT = xxT + yyT , this implies

uuT + vvT = uuT + (u+ v)(u+ v)T =⇒ vvT = (u+ v)(u+ v)T .

But since we know that u ̸= 0, the vectors v and u + v must be different, and thus the matrices vvT and
(u+ v)(u+ v)T must also be different. Thus we cannot have {x, y} = {u, u+ v}. Similarly, we can show
that {x, y} = {v, u+ v} is also impossible. The only possibility left is that {x, y} = {u, v}, as desired.

Given the above, it is not hard to show that the set of symmetric matrices of rank at most one have tiny
intersections with affine subspaces - in other words, they form a subspace-evasive set, which is a fundamen-
tal object from linear-algebraic pseudorandomness [DL12]. Indeed, if the intersection were big, then the
Sidon property of the these matrices guarantees that the intersection blows up under addition, while the fact
that the intersection belongs to an affine subspace means that there simply isn’t enough room to grow.

Corollary 8.1. LetM := {vvT : v ∈ Fn2} be the set of symmetric matrices of rank at most one. Then for
any nonempty affine subspace S ⊆ Fn×n2 ,

|M ∩ S|
|S|

≤ 4√
|S|

Proof. LetM′ := M∩ S, and let S′ be the smallest subspace containing S. Observe that S′ has size at
most 2|S|, since adding the shift vector of S to its basis will always create a subspace containing S. Now,
note that since M is a Sidon set (by Lemma 8.4), we also have that M′ is a Sidon set. Thus, M′ grows
maximally under addition. At the same time, we also haveM′ ⊆ S ⊆ S′, which means that the sumset16

M′ +M′ must be contained in S′ (since S′ is a subspace). Putting these observations together, we get

1 +

(
|M′|
2

)
≤ |M′ +M′| ≤ |S′| ≤ 2|S|,

which implies |M′|2/4 ≤ 2|S|. The result follows.

With these results in hand, it is now easy to obtain our barrier result, Theorem 8.5.

Proof of Theorem 8.5. Fix any ℓ ∈ N, and define n := ℓ2. Let Y ∼ {0, 1}ℓ be a uniform random variable,
and define X := YYT , where we identify {0, 1}ℓ with the vector space Fℓ2 in the natural way. It is easy
to verify that X is a 2-local source over {0, 1}n with min-entropy k = ℓ =

√
n, since every bit in X is a

product of two bits in Y, and since every fixing of Y forces X to a different value. Now, let S ∼ {0, 1}n

16Given a set A, the sumset A+A is simply defined as the set of all sums, namely {a+ a′ : a ∈ A, a′ ∈ A}.

154

be an arbitrary convex combination of affine sources {S(i)}i, each with min-entropy at least t. If we letM
denote the support of X, then the definition of statistical distance and Corollary 8.1 yield the following:

|X− S| ≥ Pr[X ∈M]− Pr[S ∈M]

≥ 1−max
i

Pr[S(i) ∈M]

= 1−max
i

|M ∩ support(S(i))|
|support(S(i))|

≥ 1−max
i

4√
|support(S(i))|

= 1− 4

2t/2
.

Plugging in t ≥ 6 yields the result.

Thus, if we ever hope to extract from local sources with min-entropy beyond
√
n, we must look beyond

the world of black-box affine extractors. But where exactly should we look? The answer is simple: towards
the world of white-box affine extractors.

8.4 Do white-box affine extractors suffice?

While black-box reductions form the bread and butter of extractor theory, sometimes such reductions are
simply impossible to obtain. In such cases, it is not uncommon to attempt to extract using a white-box
extractor: namely, a specific function (or class of functions) that are known to extract from a host of different
source classes. While surprising, it turns out that this heavy-handed approach can be surprisingly effective.
Indeed, certain specific functions just happen to be good at extracting from a variety of different sources.17

So, which specific function should we use to deal with our unruly local sources?

8.4.1 On the power of (random) low-degree polynomials

We turn to the family of (random) low-degree polynomials for help. The reason for this is simple: in a
classical work of Cohen and Tal [CT15], it was shown that this family of functions are excellent extractors
for affine sources. Thus, given that black-box affine extractors cannot extract from local sources beyond
min-entropy k =

√
n (Theorem 8.5), it is only natural to see if white box affine extractors can help.

The basics of random low-degree polynomials

Before we can dive into the above direction, let us review a few basic definitions and facts about random
low-degree polynomials. First, recall that every function f : Fn2 → F2 has a unique representation as a
multilinear F2-polynomial. This means there exist (unique) coefficients {cS}S⊆[n], each from F2, so that

f(x) =
∑
S⊆[n]

cSx
S .

One consequence of this is the simple fact for every family of sources (from which extraction is possible),
there is an polynomial (over F2) that extracts from that family. The interesting question, then, is whether
there exists a low-degree polynomial that does the trick. Here, the degree of the polynomial f (from above)

17For example, inner product (mod 2) extracts from both independent sources (Chapter 3) and affine sources (Chapter 6).

155

is denoted deg(f) and defined as the largest S such that cS = 1. If no such S exists, we simply say
that deg(f) = −∞. Now, with all of these definitions in mind, we define a random degree r polynomial
f : Fn2 → F2 to be one that sets each cS to 1 with probability 1/2 if |S| ≤ r, and otherwise sets cS = 0.

It will also sometimes be useful to think about sets of polynomials. Here, we let F2[x1, . . . , xn] denote
the set of all (multilinear) polynomials over F2, and we let {fi} ⊆ F2[x1, . . . , xn] refer to a subset (of
unspecified size) of such polynomials. Given such a subset, we say that the linear degree of {fi} is the sum
of the degrees of fi’s that have degree 1, while the nonlinear degree of {fi} is the sum of the degrees of the
fi’s which have degree > 1. The degree of {fi}, then, is simply the sum of the degree across all the fi’s.
Finally, we say that x is a common solution to {fi} if fi(x) = 0 for all i, and we say it is nontrivial if x ̸= 0.

With this in mind, let us return to the task at hand: seeing if low-degree polynomials are good extractors.

Known extractors from random low-degree polynomials

As it turns out, there is an increasing amount of evidence that random low-degree polynomials are great
extractors for a number of different source families. The first result in this direction was obtained by Ben-
Eliezer, Hod, and Lovett [BEHL12], who showed that random low-degree polynomials have extremely low
bias.18 More formally, they proved the following.

Lemma 8.5 (Low-degree polynomials have low bias [BEHL12]). There exists a constant c > 0 such that
for all n ∈ N and 1 ≤ r ≤ 0.99n, a random degree r polynomial f : Fn2 → F2 has

Pr
f

[
| bias(f)| > 2−cn/r

]
≤ 2

−c(n
≤r).

It may be a bit silly to think of it this way, but the above can actually be viewed as a result on the power
of low-degree polynomials as extractors. In particular, it shows that they extract from the trivial source
family X = {Un}. Combining this with the classical extractor impossibility result (Fact 1.1), we get:

Theorem 8.6 (Low-degree polynomials extract from general sources [BEHL12]). There exist constants
C, c > 0 such that for all n ∈ N and 1 ≤ r ≤ 0.99n, the following holds. A random degree r polynomial
f : Fn2 → F2 is a 2−ck/r-extractor for sources of min-entropy

k ≥ n,

except with probability at most 2−c(
k
≤r). On the other hand, for every degree r polynomial g : Fn2 → F2

there exists a source of min-entropy
k ≥ n− 1

on which it is constant.

As it turns out, it is sometimes easy to bootstrap the above result to show that random low-degree poly-
nomials extract from other families of sources. In particular, Cohen and Tal [CT15] made the observation
that by doing so, one can show that random low-degree polynomials can extract from affine sources that have
relatively low min-entropy. Their main result, however, is a lower bound showing the exact min-entropy at
which such extractors fail. In total, they prove the following.

18Recall that the bias of a fixed function f : Fn
2 → F2 is bias(f) := |Ex[(−1)f(x)]| = |Prx[f(x) = 0] − Prx[f(x) = 1]|,

while the correlation between two functions f, g is corr(f, g) := |Ex[(−1)f(x)+g(x)]| = |Prx[f(x) = g(x)]−Pr[f(x) ̸= g(x)]|.

156

Theorem 8.7 (Low-degree polynomials extract from affine sources [CT15]). There exist constants C, c > 0
such that for all n ∈ N and 2 ≤ r ≤ c log n, the following holds. A random degree r polynomial f : Fn2 →
F2 is a 2−ck/r-extractor for affine sources of min-entropy

k ≥ Cr · n1/(r−1),

except with probability at most 2−c(
k
≤r). On the other hand, for every degree r polynomial g : Fn2 → F2

there exists an affine source of min-entropy

k ≥ cr · n1/(r−1)

on which it is constant.

Given the above results, it is natural to ask from what other sources can random low-degree polynomials
extract. As advertised in Section 8.2, we contribute a new result in this direction, further demonstrating the
power of low-degree polynomials. The main contribution of this chapter is the following theorem.

Theorem 8.8 (Low-degree polynomials extract from local sources - Theorem 8.1, restated). For every d ∈ N
there exist constants C, c > 0 such that for all n ∈ N and 2 ≤ r ≤ c log n, the following holds. A random
degree r polynomial f : Fn2 → F2 is a 2−ck/r-extractor for d-local sources of min-entropy

k ≥ Cr · (n log n)1/r,

except with probability at most 2−(
ck
≤r). On the other hand, for every degree r polynomial g : Fn2 → F2 there

exists a d-local source of min-entropy
k ≥ cr · (n log n)1/r

on which it is constant.

Comparing all the theorems above, we see that random low-degree polynomials gradually become better
extractors as we move from the family of all sources (Theorem 8.6) to the family of affine sources (Theo-
rem 8.7) to the family of local sources (Theorem 8.8). However, upon further reflection, one might notice
that the entropy requirement in the latter two results are eerily similar. Given this, a natural question is
whether can prove a result that interpolates between them. As it turns out, we prove exactly such a result
along the way to proving Theorem 8.8. More formally, we show the following.

Theorem 8.9 (Low-degree polynomials extract from local affine sources). There exist constants C, c > 0

such that for all n ∈ N and 2 ≤ r ≤ c log n and d ≤ n
1

r−1
−2−10r

/ log n, the following holds. A random
degree r polynomial f : Fn2 → F2 is a 2−ck/r-extractor for d-local affine sources of min-entropy

k ≥ Cr · (dn log n)1/r,

except with probability at most 2−c(
k
≤r). On the other hand, for every degree r polynomial g : Fn2 → F2

there exists a d-local affine source of min-entropy

k ≥ cr · (dn log n)1/r

on which it is constant.

157

In the remainder of this section, we focus on showing the above results, providing a formal proof for all
of our main theorems discussed above and in Section 8.2. We start by proving upper bounds on the entropy
required to extract from local sources with low-degree polynomials in Section 8.4.2, thereby obtaining The-
orem 8.2. Then, in Section 8.4.3, we turn to prove our lower bounds on min-entropy, Theorem 8.3. Together,
these immediately imply our main contribution of the chapter: a tight characterization of the power of low-
degree polynomials as extractors for local sources (Theorem 8.1, stated as Theorem 8.8 above). Along the
way, as promised, we prove our result that interpolates between affine and local sources (Theorem 8.9).

8.4.2 Entropy upper bounds: a reduction from d-local sources to d-local NOBF sources

To kick things off, we will prove our upper bounds on the entropy required to extract from d-local sources
using random degree r polynomials (Theorem 8.10). In particular, we prove the following.

Theorem 8.10 (Entropy upper bounds - Theorem 8.2, restated). There exist constants C, c > 0 such that
for all n, d ∈ N and 2 ≤ r ≤ c log n, the following holds. A random degree r polynomial f : Fn2 → F2 is a
2−ck/(r2

dd2)-extractor for d-local sources of min-entropy

k ≥ Cr · 2dd2 · (2dn log n)1/r,

except with probability at most 2−(
ck/(2dd2)

≤r).

We start with a proof overview, before diving into the proof in full formality.

An overview of the proof

A natural first attempt at proving Theorem 8.10 would use a standard application of the probabilistic method,
which looks something like the following. First, let f ∈ F2[x1, . . . , xn] be a random degree r polynomial,
meaning that each monomial of size ≤ r is included in f with probability 1/2. Then, let X be the family of
d-local sources over {0, 1}n, each with min-entropy at least k. To prove that most of these polynomials are
low-error extractors for X , a standard application of the probabilistic method would suggest that we:

1. Prove that f is an extractor for a single X ∈ X with extremely high probability.

2. Show that the family X does not contain too many sources.

3. Conclude, via the union bound, that f is an extractor for every X ∈ X with high probability.

It is not too hard to complete Steps 2 and 3 in the above framework, but Step 1 turns out to be much more
challenging. To see why, let us consider an arbitrary d-local source X ∼ {0, 1}n with min-entropy at least
k. By definition of d-local source, there exists some m ∈ N and functions g1, . . . , gn : {0, 1}m → {0, 1}
such that each gi depends on just d of its inputs, and such that given a uniform Y ∼ {0, 1}m, we have

X = (g1(Y), g2(Y), . . . , gn(Y)).

Now, we want to argue that a random degree r polynomial f ∈ F2[x1, . . . , xn] is a low-error extractor for
X. To do so, consider the function F : {0, 1}m → {0, 1} defined as

F (y1, . . . , ym) = f (g1(y1, . . . , ym), . . . , gn(y1, . . . , ym)) .

158

Notice that by the definition of X and by Definition 1.1 of extractor, f is an extractor for X with error ε if

|bias(F)| :=
∣∣∣∣ Pr
y∼Um

[F (y) = 1]− Pr
y∼Um

[F (y) = 0]

∣∣∣∣ ≤ 2ε.

Thus, to argue that a random degree r polynomial f ∈ F2[x1, . . . , xn] is a low-error extractor for X, it
suffices to argue that the function F has low bias (with high probability over the selection of f).

Of course, the question now becomes: how can we ensure that F has low bias? We can start by noticing
some properties of F . First, we know F = f(g), where f is a random degree r polynomial and g is a fixed
function where each output bit depends on ≤ d input bits. Thus, it is not hard to argue that F will have
degree ≤ rd. Furthermore, since f is random and g is fixed, one may hope to argue that F is a uniformly
random polynomial of degree ≤ rd: in this case we would be done, since we know that uniformly random
low-degree polynomials have extremely low bias, with extremely high probability (Lemma 8.5).

Unfortunately, it is too much to hope that F is a uniformly random low-degree polynomial. Indeed, it
is not hard to see that the distribution of F over degree ≤ rd polynomials depends heavily on the exact
selection of g. Furthermore, for most selections of g, the random function F is not uniformly distributed
over degree ≤ t polynomials for any t.

Thus, there is no obvious way to apply Lemma 8.5 in order to argue that F will have low bias. To
proceed, it seems like we will somehow need to argue that the distribution of F over low-degree polynomials
is guaranteed to have some specific structure, and then somehow argue that a random polynomial from any
such structured distribution is guaranteed to have low-bias. Each of these steps seems quite challenging.

Reductions to the rescue. As it turns out, there is a simple trick we can use to greatly simplify the above
approach. The key idea is to reduce local sources to a simpler class of sources. Given two familes X ,Y of
distributions over {0, 1}n, we say that X reduces to Y if each X ∈ X is (close to) a convex combination
of Y ∈ Y .19 Reductions are extremely useful, because of the following well-known fact (Fact 2.8): if X
reduces to Y , and f : {0, 1}n → {0, 1} is an extractor for Y , then f is also an extractor for X .

Thus, in order to show that low-degree polynomials extract from d-local sources, a key new ingredient
we use is a reduction from d-local sources to a simpler class of sources called d-local non-oblivious bit-
fixing (NOBF) sources. Using the above discussion, it then suffices to show that low-degree polynomials
extract from d-local NOBF sources. Thus, we proceed by:

1. Defining local NOBF sources, and showing how we can appropriately tailor our previous attempt at
the probabilistic method so that it works for local NOBF sources.

2. Providing a new reduction from local sources to local NOBF sources.

Low-degree extractors for local NOBF sources. A d-local NOBF source X ∼ {0, 1}n is a natural
specialization of a d-local source where the entropic bits of the source must show up “in plain sight” some-
where in the source.20 More formally, a d-local NOBF source with min-entropy k is a random variable
X ∼ {0, 1}n for which there exist functions g1, . . . , gn : {0, 1}k → {0, 1} such that the following holds:

19By this we mean that each X ∈ X can be written in the form X =
∑

i piYi, where each Yi ∈ Y ,
∑

i pi = 1, and X samples
from Yi with probability pi.

20The relationship between local sources and local NOBF sources is not dissimilar to the relationship between error-correcting
codes and systematic error-correcting codes.

159

each gi, i ∈ [n] depends on ≤ d input bits; for every i ∈ [k] there is some i′ ∈ [n] such that gi′(y) = yi; and
for uniform Y ∼ {0, 1}k we have

X = (g1(Y), g2(Y), . . . , gn(Y)).

In other words, some k “good” bits in X are uniform, and the remaining n − k “bad” bits are d-local
functions of the good bits.

We must now show that a random degree r polynomial f ∈ F2[x1, . . . , xn] extracts from d-local NOBF
sources with entropy k. As in our strawman application of the probabilistic method, consider an arbitary
d-local NOBF source X = (g1(Y), . . . , gn(Y)) and let f ∈ F2[x1, . . . , xn] be a uniformly random degree
r polynomial. To show that f extracts from all d-local NOBF sources, recall that we just need to show that
the function F : {0, 1}k → {0, 1} defined as

F (y) := f (g1(y), . . . , gn(y))

has extremely low bias with extremely high probability. Furthermore, recall that if we can show that F itself
is a uniformly random low-degree polynomial, then we know via Lemma 8.5 that this is true.

It is still too much to hope that F is a uniform low-degree polynomial, but F is now “close enough in
structure” to one so that we can make this work. To see why, we can first assume without loss of generality
(by definition of local NOBF source) that g1(y) = y1, . . . , gk(y) = yk. Thus, we can define cS ∼ {0, 1} as
an independent uniform bit (for each S ⊆ [n] of size ≤ r) and write

F (y) =
∑

S⊆[k]:|S|≤r

cS
∏
i∈S

gi(y) +
∑

S⊆[n]:|S|≤r,S ̸⊆[k]

cS
∏
i∈S

gi(y) = A(y) +B(y),

where A ∈ F2[y1, . . . , yk] is a uniformly random polynomial of degree ≤ r, and B ∈ F2[y1, . . . , yk] is a
random polynomial whose selection of monomials is not uniformly random, but is nevertheless independent
of the selections made by A.

Thus, to show that F has extremely low bias, it suffices to show that A + B has extremely low bias.
And to show that A + B has extremely low bias, it suffices to show that A + B′ has low bias for any
fixed polynomial B′ induced by fixing the random monomials selected by B. As it turns out, this follows
immediately from (a slight tweaking of the proof of) Lemma 8.5.

Thus, a random low-degree polynomial f extracts from the d-local NOBF source X with min-entropy k
with very high probability. In other words, it fails to do so with some very small probability δ = δ(k) which
decreases rapidly as k grows. By applying the union bound, we get that f extracts from the entire family X
of d-local NOBF sources, provided δ(k) · |X | ≪ 1. All that remains is to upper bound the size of X , which
can easily be done using the d-locality of the sources.

A reduction to local NOBF sources. Above, we saw that random low-degree polynomials extract from
local NOBF sources. To complete the proof that they also extract from more general local sources, recall
that we need to provide a reduction from local sources to local NOBF sources. In other words, we need
to show that every d-local source with min-entropy k is (close to) a convex combination of d-local NOBF
sources with min-entropy k′ ≈ k. This is the main key ingredient in our result that low-degree polynomials
extract from local sources (Lemma 8.1).

Our reduction works as follows. First, pick an arbitrary d-local source X ∼ {0, 1}n with min-entropy k.
Let k′ be a parameter which is slightly smaller than k, which will be picked later. We start by arguing that
X is (close to) a convex combination of d-local NOBF sources where there are k′ good bits, but the good
bits may be biased (but not constant).

160

Towards this end, recall that X = (g1(Y), . . . , gn(Y)) for some d-local functions g1, . . . , gn :
{0, 1}m → {0, 1} and uniform Y ∼ {0, 1}m. The key idea is to consider the largest possible set T ⊆ [n]
of “good bits,” i.e., such that {Xi}i∈T are independent (and none are constants). Then, we let T ′ ⊆ [m] be
the bits of Y on which {Xi}i∈T depend. The key observation is that every bit in X depends on some bit
in {Yi}i∈T ′ , by the maximality of T . Using this observation, there are two possible cases, over which we
perform a win-win analysis.

First, it is possible that T contains ≥ k′ bits. In this case, we consider fixing all bits {Yi}i/∈T ′ . It is
then not too hard to show that X becomes a source which contains ≥ k′ good bits (which are mutually
independent and not constants), and the remaining bad bits in X are deterministic d-local functions of these
good bits.21 Thus in this case, we get that X is a convex combination of NOBF sources of the desired type.

Second, it is possible that T contains < k′ bits. In this case, we consider fixing all bits {Yi}i∈T ′ . But
since all bits in X depend on some bit in this set, this fixing decrements the locality d → d − 1. And
furthermore, since this fixes |T ′| ≤ d|T | < dk′ bits, the entropy only decreases from k → k − dk′ by the
entropy chain rule. We then recurse until we hit the first case, or until we hit d = 1. If we eventually hit
the first case, we already know that X is a convex combination of NOBF sources of the desired type. On
the other hand, it is easy to show that a 1-local source is actually a 1-local NOBF source! Thus we will
always arrive at a (biased) d′-local NOBF source with d′ ≤ d, proving that X is always convex combination
of NOBF sources of the desired type. Depending on when this recursion stops, we will arrive at an NOBF
source with the number of good bits equal to at least

min{k′, k − dk′, k − d(d− 1)k′, . . . , k − k′
∏
i∈[d]

i} ≥ min{k′, k − d2k′},

which is always at least k′ provided k′ ≤ k
2d2

.
Thus, we see that any d-local source with min-entropy k can be written as a convex combination of

d-local NOBF source with Ω(k/d2) good bits, where the good bits are mutually independent (and noncon-
stant), but they may be heavily biased. So all that remains is to show that such biased d-local NOBF sources
can be written as a convex combination of unbiased d-local NOBF sources (as they were originally defined).
This step is not difficult, by applying a standard Chernoff bound. However, since each good bit depends on
up to d bits, each such good bit Xi may have |bias(Xi)| = 1− 2 · 2−d. As a result, we end up with Ω(k

d22d
)

unbiased good bits.
This completes the reduction from local to local NOBF sources. Given our earlier proof sketch that

low-degree polynomials extract from local NOBF sources, we have finally finished our proof sketch that
low-degree polynomials also extract from local sources, as desired.

A formal presentation of the proof

Given the plan above, we are now ready to formally prove our entropy upper bounds for extracting from local
sources using low-degree polynomials (Theorem 8.10). Recall that the key idea is to reduce d-local NOBF
sources to d-local NOBF sources, and subsequently show that random low-degree polynomials extract from
the latter. Towards this end, let us start with the reduction, which is the key ingredient in our proof.

Lemma 8.6 (A reduction from d-local sources to d-local NOBF sources - Lemma 8.1, restated). There exists
a constant c > 0 such that the following holds. Let X ∼ {0, 1}n be a d-local source of min-entropy k. Then

21Technically, we need to fix a little more randomness to make this happen, but this can be done without much trouble by invoking
some standard tricks from the extractor literature.

161

X is 2−ck
′
-close to a convex combination of d-local NOBF sources of min-entropy k′, where

k′ ≥ ck

2dd2
.

We will first focus on proving this reduction, and then see that Theorem 8.10 follows without much
additional work. Towards this end, in order to reduce d-local sources to d-local NOBF sources, we use an
intermediate model called biased d-local NOBF sources. These are just like standard d-local NOBF sources,
except the good bits can be a little biased (but they are still independent).

Definition 8.3. A random variable X ∼ {0, 1}n is a (δ, k)-biased d-local NOBF source if there exists a set
S ⊆ [n] of size k such that both of the following hold:

• The bits in XS are mutually independent (but need not be identically distributed), and each Xi, i ∈ S
has bias |Pr[Xi = 1]− Pr[Xi = 0]| ≤ δ.

• Every other bit Xj , j /∈ S is a deterministic function of at most d bits in XS .

Notice that this intermediate model generalizes d-local NOBF sources of min-entropy k, which are just
(0, k)-biased d-local NOBF sources. Now, given this intermediate model, we prove our reduction from
d-local to d-local NOBF sources (Lemma 8.6) by combining the following two lemmas.

Lemma 8.7 (A reduction from d-local sources to biased d-local NOBF sources). Let X ∼ {0, 1}n be a
d-local source with min-entropy ≥ k. Then X is a convex combination of (δ, k′)-biased d-local NOBF
sources, where δ ≤ 1− 2−d and k′ ≥ k/(2d2).

Lemma 8.8 (A reduction from biased d-local NOBF sources to d-local NOBF sources). Let X ∼ {0, 1}n
be a (δ, k)-biased d-local NOBF source. Then X is ε-close to a convex combination of (0, k′)-biased d-local
NOBF sources, where k′ ≥ (1− δ)k/4 and ε = 2−(1−δ)k/4.

A straightforward calculation shows that by combining these two lemmas, Lemma 8.6 follows immedi-
ately. Thus, all that remains is to prove each lemma. We start with the former, which gives a reduction from
d-local sources to biased d-local NOBF sources.

Proof of Lemma 8.7. Let X ∼ {0, 1}n be a d-local source with min-entropy ≥ k. We wish to show that X
is a convex combination of (δ, k′)-biased d-local NOBF sources, where δ ≤ 1− 2−d and k′ ≥ k/(2d2).

The key observation that we will prove is that for any t, one of the following must hold: either

• X is a convex combination of (δ, t)-biased d-local NOBF sources, for δ ≤ 1− 2−d; or

• X is a convex combination of (d− 1)-local sources with min-entropy > k − td.

Before we prove this key observation, let us see how we can use it to prove the desired result. First, recall
that convex combinations “stack” in the following sense: if a source X is a convex combination of convex
combinations of sources from a family X , then X is just a convex combination of sources from X . Thus,
by repeatedly applying the key observation until either the first item becomes true or we arrive at a 1-local
source (the “base case”), we see that X is a convex combination of sources {Zi}, where each Zi is either:

• A (δ, t)-biased d-local NOBF source, for δ ≤ 1− 2−d; or

• A 1-local source with min-entropy > k − t · (d+ (d− 1) + · · ·+ 2) = k − t · (d2 + d− 2).

162

However, it is clear from the definitions that a 1-local source with min-entropy k′ is a 1-local NOBF
source with min-entropy k′. Furthermore, it is easy to see that a 1-local NOBF source with min-entropy
≥ k′ is a convex combination of 1-local NOBF sources with min-entropy exactly k′, by fixing any additional
random “good” bits. Thus, for any t ≤ k′, we know that a 1-local source with min-entropy ≥ k′ is a convex
combination of (δ, t)-biased d-local NOBF sources, for δ ≤ 1− 2−d.

By the above discussion, we see that for any t ≤ k − t · (d2 + d − 2), X is a convex combination of
(δ, t)-biased d-local NOBF sources, where δ ≤ 1− 2−d. Setting t = k

2d2
yields the result.

Thus, all that remains is to prove the key observation stated at the beginning of the proof. Towards this
end, let X ∼ {0, 1}n be a d-local source with min-entropy ≥ k. By definition of d-local source, there exists
some ℓ and f : {0, 1}ℓ → {0, 1}n such that X = f(Y) for uniform Y ∼ Uℓ, such that each bit Xi is a
deterministic function of at most d bits in Y. In other words, there exist sets S1, . . . , Sn ⊆ [ℓ] of size d and
functions f1, . . . , fn : {0, 1}d → {0, 1}n such that

X = (X1,X2, . . . ,Xn) = (f1(YS1), f2(YS2), . . . , fn(YSn)).

Now, let T ⊆ [n] be any set of coordinates of maximal size such that:

• H∞(Xi) > 0 for all i ∈ T ; and

• Si ∩ Sj = ∅ for any distinct i, j ∈ T .

Suppose T has size τ . Without loss of generality, assume T = [τ]. We conclude with two cases.
Case (i): τ < t. In this case, we fix the random variable YS1 , . . . ,YSτ . We know that with probability

1 over this fixing, all bits Xi, i ∈ [n] become deterministic functions of at most d − 1 unfixed variables in
Y, by the maximality of T and its intersection property. In other words, X becomes a (d− 1)-local source.
Furthermore, by Lemma 2.2, we know that with probability 1 over this fixing, X loses

∑
i∈[τ] |Si| = dτ < dt

bits of min-entropy. Thus in this case, X is a convex combination of (d − 1)-local sources of min-entropy
> k − dt.

Case (ii): τ ≥ t. In this case, define S := [n] − (
⋃
i∈[τ] Si) and notice that S1, S2, . . . , Sτ , S partition

the coordinates of Y. Next, define the random variables Zi := YSi for each i ∈ [τ], and define Z := YS .
Notice that Xi = fi(Zi) for each i ∈ [τ]. Furthermore, it is straightforward to verify that for all j > τ , there
exists a set Qj ⊆ [τ] of size at most d and a deterministic function f ′j such that Xj = f ′j(ZQj ,Z). In other
words, we can rewrite X as

X = (X1, . . . ,Xτ ,Xτ+1, . . . ,Xn)

= (f1(Z1), . . . , fτ (Zτ), f
′
τ+1(ZQτ+1 ,Z), . . . , f

′
n(ZQn ,Z)).

Now, for each i ∈ [τ], define Ai := fi(Zi). Furthermore, it is straightforward to show that we can define
a new random variable B independent of Y, and for each i ∈ [τ] a deterministic function gi such that
gi(Ai,B) = Zi for all i ∈ [τ]. Thus, for any subset Q ⊆ [τ] we have ZQ = g′Q(AQ,B) for some
deterministic function g′Q. And finally, for each j > τ there must be some deterministic function ψj such
that

f ′j(ZQj ,Z) = ψj(AQj ,B,Z).

Thus we can rewrite X as:

X = (A1, . . . ,Aτ , ψτ+1(AQτ+1 ,B,Z), . . . , ψn(AQn ,B,Z)).

Notice that the collection {Ai}i∈[τ] are mutually independent, and each has bias at most 1− 2−d since it is
a non-constant deterministic function of d uniform bits. Thus no matter how B,Z are fixed, X becomes a
(δ, t)-biased d-local NOBF source, for δ ≤ 1− 2−d.

163

We now prove the second part of our reduction (Lemma 8.8), which shows that every biased d-local
NOBF source is (close to) a convex combination of (unbiased) d-local NOBF sources.

Proof of Lemma 8.8. Let X ∼ {0, 1}n be a (δ, k)-biased d-local NOBF source. We wish to show that X
is ε-close to a convex combination of (0, k′)-biased d-local NOBF sources, where k′ ≥ (1 − δ)k/4 and
ε = 2−(1−δ)k/4.

Without loss of generality, assume that the first k bits in X are the “good bits”: that is, there exist d-local
functions gk+1, . . . , gn : {0, 1}k → {0, 1} such that

X = (X1, . . . ,Xk, gk+1(X1, . . . ,Xk), . . . , gn(X1, . . . ,Xk),

where each Xi is independent and has bias at most δ. To remove the bias from this source, the key idea will
be to simulate each Xi by two independent coins: one which is biased, and one which is not.

In more detail, for every i ∈ [k] we construct a pair of independent random variables Bi,Ai ∼ {0, 1}
as follows. First, let γi ∈ {0, 1} be the value favored by Xi, breaking ties arbitrarily. Then, define pi :=
Pr[Xi = γi], and notice that 1

2 ≤ pi ≤
1+δ
2 , where the lower bound holds because Xi favors γi over 1− γi,

and the upper bound holds because the good bits have bias at most δ. Next, define Bi such that

Pr[Bi = 0] = 2pi − 1,

Pr[Bi = 1] = 2− 2pi.

Finally, let Ai ∼ {0, 1} simply be a uniform bit, and define the function hi : {0, 1} × {0, 1} → {0, 1} as

hi(b, a) :=

{
γi if b = 0,

a if b = 1.

Given these definitions, it is straightforward to verify that Xi has the same distribution as Hi :=
hi(Bi,Ai), and thus we may rewrite X as

X = (H1, . . . ,Hk, gk+1(H1, . . . ,Hk), . . . , gn(H1, . . . ,Hk)).

Now, define the random variable B = (B1, . . . ,Bk). Given the above description of X, it is not too
difficult to see that for any b ∈ {0, 1}k, the conditional distribution (X | B = b) is a d-local (unbiased)
NOBF source, which has min-entropy equal to the Hamming weight of b. Thus, we may write X as the
convex combination

X =
∑

b∈{0,1}k
Pr[B = b] · (X | B = b).

This means that if B has Hamming weight ≥ k′ with probability ≥ 1 − ε, then X is ε-close to a convex
combination of d-local NOBF sources with min-entropy≥ k′. Such a claim will follow almost immediately
from a Chernoff bound.

In more detail, define a random variable Z :=
∑

i∈[k]Bi and notice that the value of Z is exactly the
Hamming weight of B. Furthermore, recall that Bi = 1 with probability 2 − 2pi for some pi ∈ [12 ,

1+δ
2].

Thus
µ := E[Z] =

∑
i∈[k]

E[Bi] ≥ k · (2− 2 · ((1 + δ)/2)) = (1− δ)k.

Thus, by a standard Chernoff bound on the lower tail, we get that

Pr[Z ≤ µ/4] ≤ e−µ·(3/4)2/2 ≤ 2−µ/4,

164

which means that B has Hamming weight ≥ µ/4 with probability ≥ 1− 2−µ/4. Thus, X is 2−µ/4-close to
a convex combination of d-local NOBF sources with min-entropy ≥ µ/4, as desired.

Given our reduction from d-local sources to d-local NOBF sources, not much work remains to show
that a random low-degree polynomial extracts from the former (and thereby prove Theorem 8.10). The final
missing ingredient we need is the following generalization of Lemma 8.5, which shows that a random degree
r polynomial not only has low bias, but has low correlation with any (single) fixed function.

Lemma 8.9 (Implicit in [BEHL12]). There exists a constant c > 0 such that for all n ∈ N and 1 ≤ r ≤
c log n, and any fixed function g : Fn2 → F2, a random degree r polynomial f : Fn2 → F2 has

Pr
f
[| corr(f, g)| > 2−cn/r] ≤ 2

−c(n
≤r)

By combining our reduction (Lemma 8.6) with the above correlation bounds (Lemma 8.9), we can
finally show that a random low-degree polynomial extracts from local sources (Theorem 8.10).

Proof of Theorem 8.10. We aim to show that a random degree r polynomial extracts from d-local NOBF
sources, and will apply our reduction (Lemma 8.6) at the end, to show the same is true for d-local sources.
We use the probabilistic method to establish the former. Towards this end, let X ∼ {0, 1}n be an arbitrary
d-local NOBF source of min-entropy k, and let f : Fn2 → F2 be a random degree r polynomial. Assume
(without loss of generality) that X1, . . . ,Xk are the “good bits” in the NOBF source.

Now, let f ′ be the (sum of the) monomials in f that do not use any variables outside X1, . . . ,Xk,
and let g be the (sum of the) monomials in f that use at least one variable outside X1, . . . ,Xk. This
gives us f(X) = f ′(X) + g(X), where f ′ is a random degree r polynomial over X1, . . . ,Xk, and g is
an (independent) random polynomial over X1, . . . ,Xn. By definition of NOBF source, each of the bits
Xk+1, . . . ,Xn is a deterministic function of the good bits X1, . . . ,Xk, and thus we have

f(X) = f ′(X1, . . . ,Xk) + g′(X1, . . . ,Xk),

where f ′ is a random degree r polynomial over X1, . . . ,Xk and g′ is an independent (but not necessar-
ily uniform) random polynomial over the same set of variables. Now, since X1, . . . ,Xk are independent
uniform bits, we have that f is an extractor with error

ε =

∣∣∣∣ Pr
x∼Uk

[f(x) = 1]− 1

2

∣∣∣∣ = ∣∣∣∣ Pr
x∼Uk

[f ′(x) ̸= g′(x)]− 1

2

∣∣∣∣ = 1

2
corr(f ′, g′).

Thus

Pr
f
[f is not an extractor for X with error ε] = Pr

f ′,g′
[corr(f ′, g′) > 2ε]

≤ Pr
f ′
[corr(f ′, g∗) > 2ε],

where g∗ = argmaxg′ Prf ′ [corr(f
′, g′) > 2ε]. Thus, g∗ : Fk2 → F2 is an arbitrary fixed function and

f ′ : Fk2 → F2 is a random degree r polynomial. As such, the correlation bounds from Lemma 8.9 yield

Pr
f
[f is not an extractor for X with error 2−ck/r] ≤ Pr

f ′
[corr(f ′, g∗) > 2 · 2−ck/r]

≤ Pr
f ′
[corr(f ′, g∗) > 2−c

′k/r]

≤ 2
−c(k

≤r),

165

for some small constants c, c′ > 0. Thus, we have established that a random degree r polynomial f is
a 2−ck/r-extractor for a single d-local NOBF source with min-entropy k, except with probability at most

2
−c(k

≤r). Now, notice that if we let X be the family of all d-local NOBF sources with min-entropy k, a
standard counting argument yields

|X | ≤
(
n

k

)
·
((

k

d

)
· 22d

)n−k
.

To show that f is an extractor for this entire family at the same time, we just need |X |·2−c(
k
≤r) ≤ 2

−0.5c(k
≤r),

or rather |X | ≤ 2
0.5c(k

≤r). It is straightforward to verify that this is true if

k ≥ Cr · (2dn log n)1/r

for a big enough constant C. Thus, we get that a random degree r polynomial f : Fn2 → F2 is a 2−ck/r-
extractor for the family of d-local NOBF sources of min-entropy k ≥ Cr · (2dn log n)1/r, except with

probability at most 2−0.5c(
k
≤r). Thus, using our reduction (Lemma 8.6), we get that f is a 2−c

′k/(r2dd2)-
extractor for the family of d-local sources of min-entropy

k ≥ C ′r · 2dd2 · (2dn log n)1/r,

except with probability at most 2−c
′(c

′k/(2dd2)
≤r) for some constant c′ > 0, as desired.

8.4.3 Entropy lower bounds: a low-weight Chevalley-Warning theorem

We now move towards proving our lower bounds on the entropy required to extract from d-local sources
using random degree r polynomials (Theorem 8.10). In particular, we prove the following.

Theorem 8.11 (Entropy lower bounds - Theorem 8.3, restated). There exists a constant c > 0 such that for
all n, d ∈ N and 2 ≤ r ≤ c log n such that d ≤ n

1
r−1
−2−10r

/ log n, the following holds. For every degree r
polynomial g : Fn2 → F2 there exists a d-local source of min-entropy

k ≥ cr · (dn log n)1/r

on which it is constant.

As before, we shall start with a proof overview, before providing the proof in its full formality.

An overview of the proof

In order to prove Theorem 8.11, we must show that for every degree≤ r polynomial f ∈ F2[x1, . . . , xn], we
can find a d-local source X ∼ {0, 1}n with relatively high min-entropy k on which f is constant. In other
words, we show that in order to disperse (and thus extract) from d-local sources, they must have min-entropy
exceeding this value k. Towards this end, we actually prove a slightly stronger result: we show that we can
find a d-local source X ∼ {0, 1}n with the above parameters such that it is also affine.

Our starting point is the tight result of Cohen and Tal (Theorem 8.7), which shows that any degree ≤ r
polynomial f : Fn2 → F2 admits a subspace V ⊆ Fn2 of dimension Ω(rn1/(r−1)) on which it is constant.
Here, we obtain a (tight) local version of their result, and show that any degree ≤ r polynomial f admits a

166

d-local subspace X ⊆ Fn2 of dimension k = Ω(r(dn log n)1/r) on which it is constant. Here, we say that V
is d-local if V has a basis v1, . . . , vk ∈ Fn2 such that for any index i ∈ [n], at most d of these basis vectors
equal 1 at this index. It is straightforward to verify that the uniform distribution X over V is a d-local source
with min-entropy k, so we focus now on proving the existence of such a V .

At a high level, the proof of Cohen and Tal proceeds by iteratively growing a subspace V on which
f is constant. At each phase, they define a set A ⊆ Fn2 such that f is constant over span(V, x) for every
x ∈ A. They note that if |A| has size > 2dim(V), then of course there is some x ∈ A \V and furthermore we
already know that f is constant on span(V, x). Thus, they can grow their monochromatic subspace by one
dimension.

In order to get a lower bound on |A|, they note that this set can be defined as the common solutions
to a small collection of low-degree polynomials. A classical result known as the Chevalley-Warning the-
orem (Theorem 8.12) then shows that |A| ≥ 2n−t, where t is the sum of degrees across the collection of
polynomials. To complete their proof, they grow their subspace V until they are no longer able to show
|A| > 2dim(V).

In our lower bound, we show that f is monochromatic on a d-local subspace. To prove this, we start with
the same approach as Cohen and Tal. However, at each phase, we add extra constraints toAwhich guarantee
the following: if we take any x ∈ A and add it to our current subspace V (with basis, say, v1, . . . , v| dim(V)|),
then the location of the 1s appearing in vectors x, v1, . . . , v|dim(V)| satisfy the d-locality constraint defined
above. Again, as long asA is large enough, we can find some x ∈ A that grows the dimension of our d-local
subspace.

In order to ensure that A remains large for as many iterations as possible, we would like to minimize the
impact of the new “locality” constraints that we have added to A. Given the description of these constraints
above, we observe that these constraints are minimized if we grow V by carefully selecting vectors that have
the lowest possible Hamming weight. However, we now need an upper bound on the Hamming weight of
the lightest (nontrivial) common solution to a system of polynomial equations. Thus, our key new ingredient
will be a result of this type, which we call a low-weight Chevalley-Warning theorem.

A low-weight Chevalley-Warning theorem. Above, we saw how the classical Chevalley-Warning theo-
rem is critical in lower bounding the size of A, thereby showing that there is some (nontrivial) vector v ∈ A
by which we can grow our monochromatic subspace. Now, we need an additional guarantee that there is
such a v ∈ A that also has low Hamming weight. We prove such a result, and call it a low-weight Chevalley-
Warning theorem. Our theorem roughly says the following. Given a collection {fi} of polynomials that
have cumulative degree D (and a common solution 0), if most of these polynomials have degree ≤ 1 then
they admit a nontrivial solution of Hamming weight at most

w = O(D/ log(n/D)).

In order to prove our result, our key observation is that for any large enough subset A of common
solutions to {fi}, it holds that A + A also contains a (nontrivial) common solution to {fi}. As it turns
out, this observation follows quite readily from the CLP lemma [CLP17] - a result which was instrumental
in the recent resolution of the cap set conjecture. Furthermore, given the above observation, we obtain an
elementary proof of our low-weight Chevalley-Warning theorem, as follows. First, we let Q denote the set
of common solutions to our collection of polynomials, and then:

1. We assume for contradiction that there is no nontrivial solution q ∈ Q of weight ≤ w.

2. We use our key observation to conclude that every Hamming ball of radius w/2 cannot have too many
elements of Q in it, which implies that Q is a list-decodable code with small list size at radius w/2.

167

3. Using the list-decoding properties of Q, we use the Hamming bound (for list-decodable codes) to get
an upper bound on its size.

4. Using the fact that Q holds the common solutions to a small set of low-degree polynomials, we use
the classical Chevalley-Warning theorem to get a lower bound on its size.

5. We observe that the lower bound is greater than the upper bound, which yields a contradiction.

Equipped with our low-weight Chevalley-Warning theorem, our entropy lower bound for low-degree
extraction from d-local affine spaces follows immediately via the proof sketch described above.

A formal presentation of the proof

Now that we have a plan for how we will prove our entropy lower bounds (Theorem 8.11), let us proceed with
its formal proof. Recall that in order to prove our lower bounds, we obtain a new type of Chevalley-Warning
theorem, which we view as our main new ingredient (Lemma 8.2). The Chevalley-Warning theorem is a
classical result from number theory, which guarantees that a small set of low-degree polynomials admits a
nontrivial common solution. More formally, it states the following.

Theorem 8.12 (Chevalley-Warning theorem [War36]). Let {fi : Fn2 → F2} be a set of polynomials with
degree at most D such that 0 is a common solution. Then there are at least 2n−D common solutions to {fi}.
In particular, if D < n, then there must be a nontrivial common solution.

To start things off, we prove a “low-weight” version of this theorem, which will be instrumental in our
proof of Theorem 8.11. In more detail, we believe it is natural to ask not only if {fi} contains a nontrivial
common solution, but if {fi} contains a nontrivial common solution of low Hamming weight.

In the case where all the fi are linear, this is a question about the distance-dimension tradeoff of linear
codes. Here, this question is answered by the Hamming bound (Theorem 2.2), which says that there must
be a nontrivial common solution of weight w ≤ O(D/ log(n/D)).22 On the other hand, for general col-
lections {fi} that may have nonlinear polynomials, it is straightforward to use classical Chevalley-Warning
(Theorem 8.12) to show that there is always a nontrivial common solution of weight w ≤ D + 1,23 and one
can show that this is tight in general.24

Thus, the upper bound on Hamming weight is much better when we know that all the polynomials in
{fi} are linear. This begs the question: if we know that most of the polynomials in {fi} are linear, can we
get an upper bound on Hamming weight that is almost as strong as in the purely linear case? And, more
generally, can we get a granular bound that takes into account exactly how many fi are linear and nonlinear?

Our low-weight Chevalley-Warning theorem, which we state next, provides a result of exactly this form.

Theorem 8.13 (Low-weight Chevalley-Warning theorem). Let {fi} ⊆ F2[x1, . . . , xn] be a set of polyno-
mials with linear degree at most D and nonlinear degree at most ∆, such that 0 is a common solution and
D +∆ < n. If all nontrivial common solutions to {fi} have Hamming weight > w, then(

n

≤ ⌊w/2⌋

)
≤ 2D+∆+1 ·

(
n

≤ ⌊∆/2⌋

)
.

As we will see, a relatively straightforward (but tedious) calculation yields the following corollary.
22More formally, it says that if all nontrivial solutions have weight > w, then it must hold that

(
n

≤⌊w/2⌋

)
≤ 2D .

23Given a collection {fi} ⊆ F2[x1, . . . , xn] of degree D, apply Theorem 8.12 to the collection {fi}∪{x1, x2, . . . , xn−(D+1)}.
24Consider the singleton set {f} ⊆ F2[x1, . . . , xn], where f(x) =

∑
∅⊊S⊆[n]:|S|≤D xS .

168

Corollary 8.2 (Lemma 8.2, restated). Let {fi : Fn2 → F2} be a set of polynomials with linear degree at
most D and nonlinear degree at most ∆ such that 0 is a common solution and D +∆ < n. Then there is a
nontrivial common solution with Hamming weight

w ≤ 8∆ + 8D/ log(n/D) + 8.25

Notice that the weight upper bound in Corollary 8.2 tightly interpolates (up to constant factors) between
the linear and nonlinear cases discussed above. We will also see that it is not difficult to extend Corollary 8.2
to obtain the following, which is the result that we will actually end up using in our proof of our Theorem 8.9.

Corollary 8.3. Let {fi : Fn2 → F2} be a set of polynomials with linear degree at most D and nonlinear
degree at most ∆ such that 0 is a common solution. Then for any S ⊆ [n] such that D+∆ < |S|, there is a
nontrivial common solution supported on S with Hamming weight

w ≤ 8∆ + 8D/ log(|S|/D) + 8.

We start by proving Theorem 8.13 and Corollaries 8.2 and 8.3. The proof of Theorem 8.13 is more
interesting, and presented first. The proofs of Corollaries 8.2 and 8.3 are less interesting and somewhat
tedious, and presented after. Once those proofs are complete, we will finally turn to prove the lower bounds
in Theorem 8.11. We encourage the reader to skip the proofs of the corollaries, but provide them for
completeness.

A proof of our low-weight Chevalley-Warning theorem

We now prove our low-weight Chevalley-Warning theorem (Theorem 8.13). The key ingredient we need
is the following lemma, which says that for any collection of polynomials {fi} and any big enough set of
common solutions A, it holds that A+A contains a nontrivial common solution.

Lemma 8.10. Let {fi} ⊆ F2[x1, . . . , xn] be a set of polynomials with nonlinear degree at most ∆ such that
0 is a common solution. Then for any set A ⊆ Fn2 of common solutions of size

|A| > 2

(
n

≤ ⌊∆/2⌋

)
,

it holds that A+A contains a nontrivial common solution.

Before proving this result, we show how it can be combined with the Hamming bound and the classical
Chevalley-Warning theorem to get Theorem 8.13, our low-weight Chevalley-Warning theorem.

Proof of Theorem 8.13. Let Q ⊆ Fn2 be the set of common solutions to {fi}, and suppose that all v ∈
Q− {0} have Hamming weight > w. Then for any ball B of radius ⌊w/2⌋, it must hold that

|Q ∩ B| ≤ 2

(
n

≤ ⌊∆/2⌋

)
,

since otherwise Lemma 8.10 (combined with the triangle inequality) implies that that there is a nontrivial
solution of weight at most 2⌊w/2⌋ ≤ w. Thus, we see thatQ is a (ρ, L)-list-decodable code (Definition 2.9),

25We define the expression 8D/ log(n/D) to be 0 if D = 0.

169

where

ρ = ⌊w/2⌋/n,

L = 2

(
n

≤ ⌊∆/2⌋

)
.

Now, the Hamming bound (Theorem 2.2) implies that |Q| ≤ 2nL/
(
n
≤ρn
)
, whereas the Chevalley-Warning

theorem (Theorem 8.12) implies that 2n−(D+∆) ≤ |Q|. Combining these inequalities yields

2n−(D+∆) ≤ 2nL(
n
≤ρn
) ≤ 2n · 2

(
n

≤⌊∆/2⌋
)(

n
≤⌊w/2⌋

) ,

which immediately implies the result.

All that remains is to prove our key ingredient, Lemma 8.10. As it turns out, it follows quite readily
from the following well-known CLP Lemma [CLP17], which was instrumental in the recent resolution of
the cap set conjecture [EG17].

Lemma 8.11 (CLP Lemma [CLP17]). Let f ∈ F2[x1, . . . , xn] be a polynomial of degree at most r, and let
M denote the 2n × 2n matrix with entries Mx,y = f(x+ y) for x, y ∈ Fn2 . Then

rank(M) ≤ 2

(
n

≤ ⌊r/2⌋

)
.

Given the CLP Lemma, we are ready to prove Lemma 8.10, which will conclude our proof of Theorem 8.13.

Proof of Lemma 8.10. First, let {gi} ⊆ {fi} be the set of polynomials in {fi} that have degree > 1. Notice
that if A + A contains a nontrivial common solution to the system {gi}, then it also contains a nontrivial
common solution to {fi}: this follows from the linearity of the polynomials of {fi}− {gi} and the fact that
every a ∈ A is a common solution (by definition of A). Thus, it suffices to show the result for the set {gi}.

Next, consider the polynomial g ∈ F2[x1, . . . , xn] defined as

g(x) :=
∏
i

(1 + gi(x)).

It is straightforward to verify that g has degree at most ∆, and that g(x) = 1 if and only if x is a common
solution to {gi}. Now, suppose for contradiction thatA+A contains no nontrivial common solution to {gi}:
that is, for every distinct x, y ∈ A it holds that g(x + y) = 0. Then, consider the 2n × 2n matrix M with
entries Mx,y = g(x+ y) for every x, y ∈ Fn2 . Define k := |A|, and let M [A,A] denote the k× k submatrix
of M obtained by taking the rows and columns of M indexed by A. Since 0 is a common solution to {gi},
we get that M [A,A] = Ik and thus

rank(M) ≥ rank(M [A,A]) = rank(Ik) = k > 2

(
n

⌊∆/2⌋

)
,

which directly contradicts Lemma 8.11.

170

Proofs of the corollaries to our low-weight Chevalley-Warning theorem

Now that we have proven our general low-weight Chevalley-Warning theorem (Theorem 8.13), we are ready
to prove its corollaries. These proofs are relatively straightforward, but somewhat tedious. We start with
the proof of Corollary 8.2, which says that we can always find a nontrivial common solution of Hamming
weight w ≤ 8∆ + 8D/ log(n/D) + 8.

Proof of Corollary 8.2. First, note that the result is true if 8∆ + 8D/ log(n/D) + 8 ≥ D + ∆ + 1, as
the existence of a nontrivial common solution with Hamming weight ≤ D + ∆ + 1 is immediate from
Chevalley-Warning (see the discussion following Theorem 8.12). Thus we henceforth assume, without loss
of generality, that

8∆ + 8D/ log(n/D) + 8 < ∆+D + 1 ≤ n, (8.1)

where the last inequality comes from the given hypothesis D+∆ < n. This string of inequalities will come
in handy later.

Now, by Theorem 8.13, we know that for any W satisfying both(
n

≤ ⌊W/2⌋

)
> 2(D+∆+1)·2, (8.2)(

n

≤ ⌊W/2⌋

)
>

(
n

≤ ⌊∆/2⌋

)2

, (8.3)

it holds that there is a nontrivial common solution of Hamming weight ≤ W . We seek to find the smallest
W satisfying both Equations (8.2) and (8.3).

We start with Equation (8.3). First, by relatively straightforward binomial inequalities, observe(
n

≤ ⌊∆/2⌋

)2

≤
(

2n

≤ 2⌊∆/2⌋

)
≤
(

n

≤ 4⌊∆/2⌋

)
,

where the last inequality uses the fact that 8∆ < n (as implied by Equation (8.1)). Thus, any W satisfying(
n

≤ ⌊W/2⌋

)
>

(
n

≤ 4⌊∆/2⌋

)
also satisfies Equation (8.3). And the above inequality is satisfied by any W satisfying

⌊W/2⌋ > 4⌊∆/2⌋,

where we have again used the assumption that 8∆ < n to ensure 4⌊∆/2⌋ < n. Thus, any W satisfying

W > 4∆ + 1.

also satisfies Equation (8.3).
We now consider Equation (8.2). By Equation (8.1), we may assume D > 7∆ + 7, which means that

∆ < D/7− 1 and thus (D +∆+ 1) · 2 < 16D/7. As a result, any W satisfying(
n

≤ ⌊W/2⌋

)
> 216D/7 (8.4)

171

also satisfies Equation (8.2). We consider two cases.
Case (i): D ≤ log n: By Equation (8.1), we may assume n > 8. It is now easy to verify that for any

W ≥ 8, (
n

≤ ⌊W/2⌋

)
≥
(
n

≤ 4

)
> n16/7 ≥ 216D/7,

thereby satisfying Equation (8.4).
Case (ii): D > log(n): Let 1 ≤ k ≤ n be a parameter we will pick later, and notice that for any

W ≥ 2k we have (
n

≤ ⌊W/2⌋

)
≥
(

n

≤ ⌊k⌋

)
≥
(
n

⌊k⌋

)
≥
(
n

⌊k⌋

)⌊k⌋
.

Thus if 1 ≤ k ≤ n is a parameter satisfying ⌊k⌋ log(n/⌊k⌋) > 16D/7 then any W ≥ 2k satisfies Equa-
tion (8.4). Now, define k := 4D/ log(n/D). By the case condition and Equation (8.1), we have 4 ≤ k < n,
and thus

3D/ log(n/D) ≤ ⌊k⌋ ≤ 4D/ log(n/D).

By Equation (8.1), we may assume log(n/D) ≥ 8, and thus

⌊k⌋ log(n/⌊k⌋) ≥ 3D

log(n/D)
log

(
n log(n/D)

4D

)
≥ 3D

log(n/D)
log

(
2n

D

)
≥ 3D,

which is strictly greater than 16D/7. Thus, every W ≥ 2k = 8D/ log(n/D) satisfies Equation (8.4).
To conclude, we get that every

W ≥ max{4∆ + 2, 8, 8D/ log(n/D)}

satisfies both Equations (8.2) and (8.3), which completes the proof.

We now turn towards proving Corollary 8.3, which says that, not only is it possible to find a low weight
common solution, but it is even possible to force this solution to be supported on a target set of coordinates
S. The proof follows quite directly by combining Corollary 8.2 with the idea of function restrictions.

Proof of Corollary 8.3. For any y ∈ F|S|2 , let y+ ∈ Fn2 denote the unique string where y+S = y and y+
S

=

0n−|S|, the string of n−|S| zeroes. Now, for each fi let gi ∈ F2[x1, . . . , x|S|] denote the polynomial gi(x) :=
fi(x

+). Notice that each deg(gi) ≤ deg(fi). Now, for each i create a polynomial hi ∈ F2[x1, . . . , x|S|]
as follows. If deg(fi) > 1 but deg(gi) = 1: assume without loss of generality that gi(x) ̸= x1, and set
hi(x) := 1 + (1 + x1)(1 + gi(x)); otherwise, just define hi(x) := gi(x).

Consider the set of polynomials {hi}. Notice that the nonlinear degree of {hi} is at most ∆, and the
linear degree of {hi} is at most D. Thus, by Corollary 8.2, there is a nontrivial common solution y to {hi}
with weight w ≤ 8∆ + 8D/ log(|S|/D) + 8. It is then straightforward to verify that y must be a common
solution to {gi}, and that y+ must be a common solution to {fi}. Furthermore, y+ is clearly supported on
S and has the same Hamming weight as y.

A proof of our entropy lower bounds

At last, we turn towards proving Theorem 8.11. As it turns out, we will not only exhibit a d-local source
that witnesses the lower bounds, but a d-local affine source. Our proof will combine our new low-weight
Chevalley-Warning theorem (Corollary 8.3) with an ingredient from Cohen and Tal [CT15] that involves

172

directional derivatives. Given a polynomial f ∈ F2[x1, . . . , xn] and a set of vectors S ⊆ Fn2 , we let fS
denote the derivative of f in the directions of S, where

fS(x) :=
∑
T⊆S

f

(
x+

∑
v∈T

v

)
.

One useful observation is that deg(fS) ≤ max{0, deg(f) − |S|}. In addition to this, the key ingredient
about directional derivatives that we import from Cohen and Tal is the following.

Lemma 8.12 ([CT15]). For any degree ≤ r polynomial f ∈ F2[x1, . . . , xn] and B ⊆ Fn2 ,

f

(
x+

∑
v∈S

v

)
= 0 for all S ⊆ B ⇐⇒ fS(x) = 0 for all S ⊆ B of size |S| ≤ r.

This shows that f is 0 on the entire affine space x+ span(B) if and only if 0 is a common solution to all
(≤ r)-wise directional derivatives of f across B. Now, given Lemma 8.12 and our low-weight Chevalley-
Warning theorem (Corollary 8.3), we are ready to prove our lower bound for extracting from d-local sources.

Proof of Theorem 8.11. Assume without loss of generality that f(0) = 0, for otherwise we can work with
the polynomial 1 + f . We will iteratively build a basis B ⊆ Fn2 of a d-local subspace X ⊆ Fn2 on which f
is constantly 0.

Towards this end, we start by initializing several sets:

• B ← ∅.

• UNIQUE← ∅.

• SATURATED← ∅.

• P ← {f}.

Now, while there exists a common nontrivial solution b ∈ Fn2 to the set P ⊆ F2[x1, . . . , xn] such that b is
supported on [n] \ (UNIQUE ∪ SATURATED), do the following:

• Let b∗ be the lowest (Hamming) weight vector of this type (breaking ties arbitrarily).

• Set B ← B ∪ {b∗}.

• Define α ∈ [n] as the smallest index such that b∗α = 1.

• Set UNIQUE← UNIQUE ∪ {α}.

• Set SATURATED← {i ∈ [n] : there are d vectors v ∈ B with vi = 1}.

• For each S ⊆ B of size |S| ≤ r, set P ← P ∪ {fS}.

This completes the construction of B.
We now proceed with the analysis. First, we argue that at the end of the above construction, B will

hold a basis for a d-local subspace X := span(B). To see why, first define T to be the number of times the
above loop executes, and for each i ∈ [T] let bi ∈ Fn2 denote the vector added to B in iteration i. Then,
let α(i) ∈ [n] denote the smallest index such that biα(i) = 1, and observe that bjα(i) = 0 for all j > i,

173

because of bullets 3-4 above (combined with the loop condition). Thus B = {b1, . . . , bT } is a collection of
linearly independent vectors: in other words, a basis. Furthermore, bullet 5 above (combined with the loop
condition) ensures that X := span(B) is d-local.

Thus we have argued that X is a d-local subspace of dimension T . Now, by combining bullet 6 above
with the loop condition and Lemma 8.12, we immediately get that f(x) = 0 for all x ∈ X . Thus, all that
remains is to get a lower bound on T , the number of times that the loop executes.

We call the first iteration of the loop iteration 1, and we call the pseudocode that precedes the while loop
iteration 0. Now, for all t = 0, . . . , T , we define the following variables, for convenience:

• Let Dt denote the degree of the system P upon completing iteration t.

• Let ∆t denote the nonlinear degree of the system P upon completing iteration t.

• Let ut denote the size of |UNIQUE| upon completing iteration t.

• Let st denote the size of |SATURATED| upon completing iteration t.

• Let wt denote the Hamming weight of the vector b∗ selected in iteration t.

Note that w0 is undefined above, and for convenience we define w0 := 0. Furthermore, for any t > T , it
will be convenient to define Dt := DT ,∆t := ∆T , and so on. Now, before we turns towards getting a lower
bound on T , we upper bound the above quantities.

• Dt ≤
∑r−1

i=0

(
t
i

)
(r − i) ≤ r

(
t

≤r−1
)
. This is because, at the end of iteration t we have: |B| = t; and P

holds the set of polynomials fS for all S ⊆ B of size |S| ≤ r; and deg(fS) ≤ max{0,deg(f)−|S|}.

• ∆t ≤
∑r−2

i=0

(
t
i

)
(r − i) ≤ r

(
t

≤r−2
)
. This holds for the same reasons as above, except that we are now

ignoring the polynomials fS for all S ⊆ B of size |S| ≥ r − 1 (since these have degree at most 1).

• ut = t, since we grow UNIQUE by a (unique) coordinate in every iteration.

• st ≤ 1
d

∑t
i=1wi, since otherwise the sum of the Hamming weights of the vectors b∗ selected in

iterations 1, . . . , t is at least dst >
∑t

i=1wi, a contradiction.

• wt ≤ 8∆t−1 + 8Dt−1/ log(
n−ut−1−st−1

Dt−1
) + 8, by Corollary 8.3.

We now turn towards getting a lower bound on T . Here, the key observation is that it must hold that

DT ≥ n− (uT + sT),

because otherwise the degree of the set of polynomials is strictly less than the size of the set on which it must
be supported, so Corollary 8.3 trivially implies that there is some nontrivial common solution supported on
S (thereby forcing the next execution of the while condition to pass). A straightforward consequence of this
is T ≥ 1 since D0 = r < n = n− (u0 + s0).

Instead of getting a lower bound on T , it will facilitate the analysis to instead lower bound some τ ≤ T .
In particular, let τ ∈ {0, 1, . . . , T − 1} be the smallest integer such that

Dτ+1 + uτ+1 + sτ+1 ≥ n/2. (8.5)

Such a τ must exist, since we saw above that DT + uT + sT ≥ n. We now seek to lower bound τ , which
will in turn lower bound T .

174

We start with a basic (but useful) lower bound on τ . In particular, we claim that τ ≥ 2r. To see why,
suppose for contradiction τ < 2r. Then by definition of τ it holds that D2r + u2r + s2r ≥ n/2. But by our
upper bounds on these quantities (and the fact that r ≥ 1) we have

D2r + u2r + s2r ≤ D2r + u2r + 8
2r−1∑
i=0

(∆i +Di + 1)

≤ D2r + u2r + 16r · (∆2r +D2r + 1)

≤ r ·
(

2r

≤ r − 1

)
+ 2r + 16r · (r ·

(
2r

≤ r − 2

)
+ r ·

(
2r

≤ r − 1

)
+ r)

≤ r · 22r + 2r + 16r · (r · 22r + r · 22r + r)

≤ 212r.

Thus we get that n/2 ≤ D2r + u2r + s2r ≤ 212r, which implies that r ≥ log(n)/13. But the theorem
hypothesis claims that r ≤ c log(n) for some universal constant c; thus, we can just pick c later to ensure
that c < 1

13 , which would yield a contradiction and conclude the proof of the claim that τ ≥ 2r. And since
r ≥ 1 by the theorem hypothesis, we also know that τ ≥ 2.

Given the above, we now proceed to get a more general lower bound on τ . We will do so by sandwiching
the quantity Dτ+1 + uτ+1 + sτ+1 between two inequalities. Towards this end, the key observation is that
for any i ∈ [τ], it holds that ui + si ≤ ui + si +Di < n/2.26 Combining this with Equation (8.5) and our

26This useful inequality is the reason we work with τ instead of T , as this is not necessarily true for any i ∈ [T].

175

earlier upper bounds on st, wt, we have

n/2 ≤ Dτ+1 + uτ+1 + sτ+1

≤ Dτ+1 + uτ+1 +
1

d

τ+1∑
i=1

wi

≤ Dτ+1 + uτ+1 +
8

d

τ∑
i=0

∆i +
Di

log
(
n−ui−si

Di

) + 1

≤ Dτ+1 + uτ+1 +

8

d

τ∑
i=0

∆τ +
Dτ

log
(
n−uτ−sτ

Dτ

) + 1

≤ Dτ+1 + (τ + 1) +

8

d
(τ + 1)

∆τ +
Dτ

log
(
n−uτ−sτ

Dτ

) + 1

≤ Dτ+1 + (τ + 1) +

8

d
(τ + 1)

∆τ +
Dτ

log
(

n
2Dτ

) + 1

≤ Dτ+1 + 2τ +

16τ

d

∆τ +
Dτ

log
(

n
2Dτ

) + 1

≤ Dτ+1 + 18τ +

16τ

d

∆τ +
Dτ

log
(

n
2Dτ

)
 .

Thus we know that if we define

K1 := Dτ+1 + 18τ +
16τ

d
∆τ ,

K2 :=
16τDτ

d log(n
2Dτ

)
,

it must hold that K1 +K2 ≥ n/2, or rather we know that either K1 ≥ n/4 or K2 ≥ n/4 must hold. We
analyze these cases separately, and get a lower bound on τ in each case. But before we do so, it will be
useful to recall that for any integers b > a ≥ 0 it holds that

(
b
a

)
≤
(
b

a+1

)
if a + 1 ≤ b/2. Since we saw

earlier that τ ≥ 2r, we have
(

2τ
≤r−1

)
≤ r ·

(
2τ
r−1
)

and
(

τ
≤r−2

)
≤ r ·

(
τ
r−2
)

and
(

τ
≤r−1

)
≤ r ·

(
τ
r−1
)
. We now

proceed with the case analysis.

Case (1): K1 ≥ n/4: By applying the upper bounds onDt,∆t obtained earlier in the proof, the standard

176

binomial inequality
(
n
k

)
≤ (en/k)k, and the fact that r ≥ 2, we have:

n/4 ≤ K1 = Dτ+1 + 18τ +
16τ

d
∆τ

≤ r ·
(
τ + 1

≤ r − 1

)
+ 18τ +

16τ

d
r ·
(

τ

≤ r − 2

)
≤ r ·

(
2τ

≤ r − 1

)
+ 18τ +

16τ

d
r ·
(

τ

≤ r − 2

)
≤ r2 ·

(
2τ

r − 1

)
+ 18τ +

16τr2

d
·
(

τ

r − 2

)
≤ r2 · (4e)r−1 ·

(τ
r

)r−1
+ 18r

(τ
r

)r−1
+

16

d
r3 · (3e)r ·

(τ
r

)r−1
≤ 3 · 18 · (4e)r · r3 ·

(τ
r

)r−1
≤ 26 · 27r ·

(τ
r

)r−1
,

which implies that

n ≤ 28 · 27r ·
(τ
r

)r−1
≤ 215r ·

(τ
r

)r−1
,

which gives

τ ≥ r ·
(
n · 2−15r

) 1
r−1 ≥ 2−30 · rn

1
r−1 .

Case (2): K2 ≥ n/4: In this case we have

n/4 ≤ K2 =
16τDτ

d log
(

n
2Dτ

) ,
which of course implies

64τDτ ≥ dn log
(

n

2Dτ

)
.

Now, notice that our earlier upper bounds on Dτ yield

Dτ ≤ r ·
(

τ

≤ r − 1

)
≤ r2 ·

(
τ

r − 1

)
≤ r2 · (2e)r−1 ·

(τ
r

)r−1
≤ 25r ·

(τ
r

)r−1
,

and combining this with the previous inequality yields

64τ · 25r ·
(τ
r

)r−1
≥ 64τDτ ≥ dn log

(
n

2Dτ

)
≥ dn log

(
n

25r+1 ·
(
τ
r

)r−1
)
.

Then, applying straightforward bounds on both sides of the above chain of inequalities yields

212r ·
(τ
r

)r
≥ dn log

(
n

26r ·
(
τ
r

)r−1
)
. (8.6)

177

We now seek to get a lower bound on all τ that satisfy the above inequality. Towards this end, notice that
for any α > 0 such that

212r ·
(α
r

)r
< dn log

(
n

26r ·
(
α
r

)r−1
)
, (8.7)

it holds that all τ that satisfy Equation (8.6) must also satisfy τ ≥ α: this is because as α decreases, the left
hand side of the above inequality decreases, while its right hand side increases.

It is now straightforward to verify that

α = 2−30 · r · (dn log n)1/r

satisfies Equation (8.7), as long as d log n ≤ n
1

r−1
−2−10r

. Thus in this case we have

τ ≥ α = 2−30 · r · (dn log n)1/r,

provided d log n ≤ n
1

r−1
−2−10r

.
To conclude, since one of the cases must hold, we get that

τ ≥ 2−30 ·min{rn
1

r−1 , r(dn log n)1/r}

if d log n ≤ n
1

r−1
−2−10r

. But given this condition on d log n, it always holds that r(dn log n)1/r ≤ rn
1

r−1 .
Thus, as long as d log n ≤ n

1
r−1
−2−10r

, we get that

T ≥ τ ≥ 2−30r(dn log n)1/r,

as desired.

A tighter result for local affine sources

Notice that our proof to our lower bound (Theorem 8.11) actually provided a d-local source that is simul-
taneously an affine source. On the other hand, our upper bounds (Theorem 8.10) worked for any d-local
source. It is natural to ask whether we can get better (perhaps even tight) upper bounds for the restricted
family of d-local affine sources. We show the answer is yes, with the following lemma.

Lemma 8.13 (Upper bound of Theorem 8.9). There exist universal constants C, c > 0 such that a random
degree r polynomial f : Fn2 → F2 is an extractor for d-local affine sources with min-entropy

k ≥ Cr · (dn log n)1/r

and error ε = 2−ck/r, except with probability at most 2−c(
k
≤r) over the selection of f .

Notice that combining this with (our proof to) Theorem 8.11 immediately yields Theorem 8.9. Now, in
order to prove Lemma 8.13, recall that our upper bounds for the more genereal family of d-local sources
(Theorem 8.10) were proven by reducing d-local sources to d-local NOBF sources (Lemma 8.6), followed
by applying the fact that a random low-degree polynomial has low correlation with any fixed function
(Lemma 8.9). For d-local affine sources, we can completely skip the first step, which is where the en-
tropy was lost. Furthermore, for the second step, we can apply the slightly simpler result that a random
low-degree polynomial has low bias (Lemma 8.5).

178

Proof of Lemma 8.13. Let X ∼ Fn2 be a d-local affine source of dimension k. It is straightforward to
show, via Gaussian elimination, that the following holds: there exists a subset S ⊆ [n] of size k such that
XS is uniform over Fk2 , and for every other j ∈ [n] there exists an affine function ℓj : Fk2 → F2 such
that Xj = ℓj(XS). Without loss of generality, assume that S = [k]. Thus if we consider the function
ℓ : Fk2 → Fn2 defined as

ℓ(y1, . . . , yk) := (y1, . . . , yk, ℓk+1(y1, . . . , yk), . . . , ℓn(y1, . . . , yk))

we of course have X = ℓ(Uk), where Uk ∼ Fk2 denotes the uniform random variable.
Now, let f ∼ F2[x1, . . . , xn] be a random polynomial of degree ≤ r. Notice that

|f(X)−U1| = |f(ℓ(Uk))−U1| = bias(f(ℓ))/2

So we want to upper bound the probability that bias(f(ℓ)) is large, over our random selection of f . Well,
consider fixing whether each monomial xS , S ̸⊆ [k] exists. Notice that under any such fixing, f(ℓ) actually
turns into a polynomial of the form f ′ + g, where f ′ ∼ F2[x1, . . . , xn] is a uniformly random degree ≤ r
polynomial, and g is a sum of monomials, each of size at most r, where each term in each monomial is
linear (i.e., degree 1). In other words, g is a fixed degree ≤ r polynomial, and thus f ′ + g is a uniformly
random degree ≤ r polynomial over k variables.

Thus, by Lemma 8.5, we get that under every such fixing, bias(f(ℓ)) ≤ 2−c1k/r except with probability

≤ 2
−c2(k

≤r). Thus for a given d-local affine source X ∼ Fn2 of min-entropy k, it holds that a random degree

≤ r polynomial extracts from X with error ≤ 2−c1k/r, except with probability ≤ 2
−c2(k

≤r).
Now, it is not hard to show that there are at most

(
k
≤d
)n · 2n d-local affine sources of dimension k. Thus,

by a union bound, we know that a random degree ≤ r polynomial extracts from all d-local affine sources
X ∼ Fn2 of min-entropy k, except with probability at most

2
−c2(k

≤r) ·
(
k

≤ d

)n
· 2n.

Thus as long as
(
k
≤d
)n · 2n ≤ 2

c2(k
≤r)/2, it holds that a random degree ≤ r polynomial extracts from d-local

affine sources with min-entropy k with error ≤ 2−c1k/r, with probability ≥ 1 − 2
−c2(k

≤r)/2. It is now easy

to verify that the inequality
(
k
≤d
)n · 2n ≤ 2

c2(k
≤r)/2 holds for the stated lower bound on k.

8.5 Extensions to more powerful circuits

In Section 8.1, we made the bold claim that local sources are, perhaps, an even more fundamental model than
circuit sources. For the case of NC0 sources, this is clear, as O(1)-local sources are identical to such circuit
sources. As a result, the main theorem of this chapter (Theorem 8.1) immediately yields the following.

Theorem 8.14 (Low-degree polynomials extract from NC0 sources). For every fixed r ∈ N, there exist
constants C, c > 0 such that the following holds. For every n ∈ N, there exists a (not necessarily explicit)
degree r polynomial f : Fn2 → F2 that is an extractor for NC0 sources of min-entropy at least

k ≥ C · (n log n)1/r,

which has error ε = 2−ck/r. Furthermore, this is tight up to the constant C.

179

For AC0 sources, the connection to local sources is not nearly as obvious. Nevertheless, Viola provided
an elegant argument in [Vio14] that local sources do, in fact, capture AC0 sources (which may, at first glance,
appear more powerful). As a result, as claimed in Section 8.1, extractors for local sources give extractors for
AC0 sources. In particular, the main theorem of this chapter (Theorem 8.1) immediately yields the following.

Theorem 8.15 (Low-degree polynomials extract from AC0 sources). For every fixed r ∈ N, δ > 0, and
t ∈ N, there exist constants C, c > 0 such that the following holds. For every n ∈ N there exists a (not
necessarily explicit) degree r polynomial f : Fn2 → F2 that is an extractor for AC0 sources of depth t and
size 2n

c
of min-entropy at least

k ≥ C · n
1
r
+δ,

which has error ε = n−c
√
log logn. Furthermore, this is tight up to the small polynomial factor nδ.

In particular, notice that in terms of the min-entropy requirement k, low-degree polynomials extract from
AC0 sources with almost the exact same parameters they can achieve on the much weaker NC0 sources. Now,
while the proof of Theorem 8.14 is immediate, the same is certainly not true about Theorem 8.15. Thus,
for completeness, let us briefly sketch its proof. Towards this end, the first key ingredient is the following
reduction from AC0 sources to d-local sources, as provided by Viola [Vio14]. Its proof makes use of random
restrictions, switching lemmas, and the fact that AC0 sources keep their min-entropy under such restrictions.

Lemma 8.14 (A reduction from AC0 sources to d-local sources [Vio14]). Let X ∼ {0, 1}n be an AC0

source of size s, depth t, and min-entropy k. Then for any d ∈ N and ε > 0, it holds that X is ε-close to a
convex combination of d-local sources of min-entropy k′, where

k′ ≥ k

(C log s)t−1 · (n/ε)1/ log d · log(1/ε)

for some universal constant C > 0.

The next ingredient, of course, is our new result on extracting from d-local sources.

Lemma 8.15 (Low-degree polynomials extract from d-local sources (Theorem 8.2, restated)). There exist
constants C, c > 0 such that for all n, d ∈ N and 2 ≤ r ≤ c log n, the following holds. There exists a degree
r polynomial f : Fn2 → F2 that is an extractor for d-local sources of min-entropy

k ≥ Cr · 2dd2 · (2dn log n)1/r,

which has error ε = 2−ck/(r2
dd2).

By leveraging these two key ingredients, the proof of Theorem 8.15 is now immediate.

Proof of Theorem 8.15. Set d =
√
log n and ε = n−

√
log d, and combine Lemmas 8.14 and 8.15.

8.6 Applications in complexity theory

Finally, just like the small-space sources studied in Chapter 7, circuit sources also fall into the category of
low-complexity sources. Thus, our new results on extracting from circuit sources also have applications in
complexity theory. In particular, just as in Section 7.4, we gain interesting new insight into the power of
computational models for the task of sampling - this time, for AC0 circuits. We go into more detail, below.

180

8.6.1 Complexity of sampling

The complexity of sampling is an exciting new area of complexity theory, where the goal is to understand
how various classical computational models perform when they are tasked with sampling from a distribution.
Lately, the complexity of sampling (especially with AC0 circuits) has received a lot of attention, and has
uncovered a wide range of unexpected applications. The primary motivation behind this new field is the fact
that sampling lower bounds are harder to obtain than classical (computing) lower bounds, and thus require a
whole new suite of tools to tackle. For a detailed introduction to the complexity of sampling, see Chapter 9.

To see why sampling lower bounds are harder to obtain (for a given computational model of interest),
it suffices to demonstrate a function f : {0, 1}n → {0, 1}m which cannot be computed by the model, but
whose output distribution can be sampled. In the context of AC0 circuits, the prototypical example is the
function f(x) := (x, b(x)), where b(x) := ⊕ixi. Indeed, classical hardness results in complexity theory
imply that AC0 cannot compute f , but it turns out that small AC0 circuits can, in fact, sample the distribution
f(Un)!27 This set researchers on a quest to find sampling lower bounds for AC0 circuits against distributions
of the form (Un, b(Un)), where b is some simple explicit function.

Sampling lower bounds against low-degree polynomials

A classical result in this direction is due to Viola [Vio16], who showed that there exist degree 2 polynomials
b : Fn2 → F2 such that AC0 circuits cannot sample (Un, b(Un)). As it turns out, by exploiting our new
result that low-degree polynomials extract from d-local sources (Theorem 8.2), we can not only recover this
result, but in fact prove something that is stronger in two notable ways. First, we prove sampling lower
bounds against the entire spectrum of low-degree polynomials, achieving a tradeoff between the degree of
the polynomial and the complexity required of the AC0 circuit that can sample it. Second, our sampling
lower bounds even work against distributions of the form (X, b(X)), where X can be taken to be anything
with sufficiently high min-entropy (including, of course, the uniform distribution). We prove the following.

Theorem 8.16 (Low-degree polynomials are hard to sample). For every constant δ > 0 there exists some
C > 0 such that for any n ≥ r ≥ 2 ∈ N, there exists a degree r polynomial b : Fn2 → F2 such that the
following holds. For any random variable X ∼ {0, 1}n with min-entropy k, there does not exist an AC0

circuit of size s and depth t satisfying

(C log s)t−1 ≤ k/rn
1
r
+δ

that can sample (X, b(X)).

For the setting of degree 2 polynomials b : Fn2 → F2, Theorem 8.16 shows that AC0 circuits of constant
depth and exponential size 2n

Ω(1)
cannot sample (Un, b(Un)). It is well-known that AC0 circuits of size

2n can sample any distribution, highlighting the strength of our lower bounds. More notably, even though
AC0 circuits cannot compute linear functions, they sure can sample them with ease (as demonstrated in
Chapter 9). Thus, just as with the case of ROBPs (Section 7.4), there is a massive jump in the required
complexity of an AC0 circuit that samples low-degree polynomials: from linear size for degree d = 1, to
exponential size for degree d = 2. Now, let us turn towards proving this result.

27For an explanation why, see Chapter 9.

181

A formal presentation of the proof

The proof of Theorem 8.16 will follow the same general game plan as the proof of our analogous result
for ROBPs (Theorem 7.5) as presented in Section 7.4. Thus, for fear of sounding too repetitive, we refer
the reader to that section for a detailed overview of how the proof is executed, and simply dive right into
the technical details here. Towards this end, we will again need three key ingredients. The first ingredient
claims that any distribution sampled by an AC0 circuit of size s and depth t is an AC0 source. This is in fact
trivially true, and indeed the definition of AC0 sources. Nevertheless, we include it below, so as to better
mirror the proof of our corresponding result for ROBPs.

Lemma 8.16 (A reduction from AC0 samplers to AC0 sources). For any X ∼ {0, 1}n, if there is an AC0

circuit of size s and depth t that samples X, then X is an AC0 source of size s and depth t.

Proof. This is immediate from the definition of AC0 sources, as given in Section 8.1.

Next, we will use the elegant reduction of Viola from AC0 sources to d-local sources, as presented in
Section 8.5. We include it again here, for convenience.

Lemma 8.17 (A reduction from AC0 sources to d-local sources - Lemma 8.14, restated). Let X ∼ {0, 1}n
be an AC0 source of size s, depth t, and min-entropy k. Then for any d ∈ N and ε > 0, it holds that X is
ε-close to a convex combination of d-local sources of min-entropy k′, where

k′ ≥ k

(C log s)t−1 · (n/ε)1/ log d · log(1/ε)

for some universal constant C > 0.

Finally, we’ll need the following main result from this chapter.28

Lemma 8.18 (Low-degree polynomials extract from d-local sources - Theorem 8.2, restated). There exist
constants C, c > 0 such that for all n, d ∈ N and 2 ≤ r ≤ c log n, the following holds. There exists a degree
r polynomial p : Fn2 → F2 that is an extractor for d-local sources of min-entropy

k ≥ Cr · 2dd2 · (2dn log n)1/r,

which has error ε = 2−ck/(r2
dd2).

Equipped with these three ingredients, we can finally prove that low-degree polynomials are hard to
sample by AC0 circuits (Theorem 8.16).

Proof of Theorem 8.16. Let b : {0, 1}n → {0, 1} be a degree r polynomial that is an extractor for d-
local sources of min-entropy Γ ≥ Cr · 2dd2 · (2dn log n)1/r and error ε = 2−cΓ/(r2

dd2), as promised by
Lemma 8.18. Let X ∼ {0, 1}n be an arbitrary distribution of min-entropy k, where k is to be decided
later. Let Q ∼ {0, 1}n+1 be a distribution sampled by an AC0 circuit of size s and depth t, and parse Q as
Q = (R,S) ∼ {0, 1}n × {0, 1}. Suppose for contradiction that Q ≡ (X, b(X)), and notice this implies
H∞(Q) = k.

28Previously, it was known that low-degree polynomials extract from affine sources, and thus 1-local sources. However, due to
the significant loss in entropy that arises from reducing AC0 sources all the way down to 1-local sources (via Lemmas 8.3 and 8.14),
this cannot be used to obtain Theorem 8.16.

182

Now, by combining Lemmas 8.16 and 8.17, we know that Q = (R,S) is δ-close to a convex combina-
tion of d-local sources Q′ = (R′,S′) that have min-entropy at least

k′ :=
k

(C log s)t−1 · (n/δ)1/ log d · log(1/δ)
.

Furthermore, by fixing the ≤ d input bits on which S′ depends, the min-entropy chain rule (Lemma 2.1)
tells us that each Q′ = (R′,S′) is 2−k

′/2-close to a convex combination of d-local sources Q′′ = (R′′,S′′)
such that S′′ is fixed and R′′ has min-entropy at least k′′ := k′/2 − d. Putting this all together, we get that
Q is (2−k

′′
+ δ)-close to a convex combination of d-local sources Q′′ = (R′′,S′′) ∼ {0, 1}n+1 such that

S′′ is fixed and R′′ has min-entropy at least

k′′ :=
k

2 · (C log s)t−1 · (n/δ)1/ log d · log(1/δ)
− d.

Now, define k so that k′′ ≥ Cr · 2dd2 · (2dn log n)1/r. Then we know that b in fact extracts from each R′′

defined above with error ε = 2−ck
′′/(r2dd2), and thus since S′′ is constant, we have

Pr[b(R′′) ̸= S′′] ≥ 1

2
− ε.

By the closeness of Q = (R,S) to this convex combination of sources, we get that

Pr[b(R) ̸= S] ≥ 1

2
− ε− δ − 2−k

′′
=

1

2
− 2−ck

′′/(r2dd2) − δ

for some constant c > 0. But at the very beginning we assumed that (R,S) ≡ (X, b(X)), which means
that Pr[b(R) ̸= S] = 0. Thus even if we set δ := 1/4, we arrive at a contradiction because we may assume
ck′′/(r2dd2) is an arbitrarily large constant, by our setting of k′′. Finally, recall that this setting of k′′ (which
yielded the contradiction) came about by setting k so that (when we fix δ := 1/4) it holds that

k

2 · (C log s)t−1 · (n/δ)1/ log d · log(1/δ)
− d

=
k

4 · (C log s)t−1 · (4n)1/ log d
− d

≥ Cr · 2dd2 · (2dn log n)1/r.

Solving for (C log s)t−1 and setting d =
√
log n immediately yields the result.

8.7 Future directions

In this chapter, we gave a full characterization of the power of low-degree polynomials for extracting from
local sources (Theorem 8.1). This not only opens the door to construct better explicit extractors for this
extremely challenging model (Lemma 8.1), but provides valuable insight into the structure of one of the
most fundamental algebraic objects (Lemma 8.2). Of course, as the ultimate goal in extractor theory is to
obtain explicit constructions, many open questions remain.

183

Improved explicit extractors for 2-local sources Naturally, the most obvious open question is to con-
struct better explicit extractors for local sources. In particular, we still don’t even have explicit dispersers for
2-local sources that can handle min-entropy below k =

√
n! This is in stark contrast to nearly every other

simple model studied in the world of seedless extraction, for which we now have dispersers (in fact, high
error extractors) that can handle k = O(log n) min-entropy [Li23]. Thus, there seems to be something fun-
damentally different about extracting from local sources, and any new explicit constructions for this setting
would significantly push forward the frontier of extractor theory.

An improved reduction from local sources to local NOBF sources A key tool we obtained in this
chapter was a new reduction from local sources to local NOBF sources (Lemma 8.1). We believe that this
reduction should help facilitate future explicit constructions of local source extractors, as it now suffices to
simply construct an explicit extractor for local NOBF sources. However, recall that our reduction transforms
a d-local source X ∼ {0, 1}n with min-entropy k into a d-local NOBF source with min-entropy Ω(k/2dd2).
While this entropy loss is no big deal if we are working with O(1)-local sources, it becomes a much bigger
problem if we wish to extract from sources of higher locality. It would be great to achieve a more efficient
reduction, so that we can safely deal with the latter case. We believe it may be possible to keep around
k/ poly(d) bits of min-entropy using a more careful argument.

An improved low-weight Chevalley-Warning theorem In order to obtain our entropy lower bounds, we
proved a new type of Chevalley-Warning theorem (Lemma 8.2), which guarantees that a small set of low-
degree polynomials not only has a common solution, but has a common solution of low (Hamming) weight.
Recall that for a collection {fi} of polynomials of linear degree D and nonlinear degree ∆ with zero as a
common solution, our result shows the existence of a solution that has weightw ≤ O(∆+ D

log(n/D)). It is not
too hard to show that this is tight if ∆ = 0 or D = 0, simply by using the Hamming bound (Theorem 2.2)
or the polynomial

∑
1≤|S|≤∆ x

S , respectively. However, it is an interesting question whether the tightness
remains for collections of polynomials that don’t exhibit such an extreme “degree profile” - for example,
taking {fi} to be a collection of ∆/2 quadratics.

184

Chapter 9

The space complexity of sampling

In the previous two chapters, we explored the question of constructing extractors for sources generated by
limited-memory algorithms and low-depth circuits. While these models are central to the field of randomness
extraction, their study gives rise to another, perhaps even more fundamental question: what do these sources
even look like? In other words,

What distributions can (and cannot) be sampled by algorithms with bounded computational resources?

This question lies at the heart of a burgeoning new area of complexity theory called the complexity
of sampling. While classical complexity theory seeks to quantify the resources required to compute some
function f : {0, 1}n → {0, 1}, this new area seeks to quantify the resources required to sample from some
distribution Q ∼ {0, 1}n. Proving lower bounds in this new setting is more challenging than in the classical
setting, and has yielded interesting new techniques and surprising applications. However, while a flurry of
recent work has developed a rich theory around the complexity of sampling with low-depth circuits, little is
known about the complexity of sampling with limited memory.

In this chapter, we aim to fill this gap, and initiate a study of the space complexity of sampling. We model
space-bounded algorithms using oblivious read-once branching programs (ROBPs), and start by answering
several basic questions about the complexity of sampling with this classical model. Among these, we show:

• Sampling with ROBPs is equivalent to sampling with small-space sources.

• Sampling is easier than computing (sampling lower bounds are harder than classical lower bounds).

• There exist simple distributions that are extremely difficult to sample with ROBPs.

These results are easy to prove, and lay the foundation for the theory of sampling with limited memory.
With these foundations in place, we move towards establishing more challenging sampling lower bounds.

In our first main result, we obtain near-optimal sampling lower bounds for a classical family of distri-
butions. In particular, we show that any distribution sampled by an ROBP of width 2Ω(n) has statistical
distance 1−2−Ω(n) from any distribution that is uniform over a good error-correcting code. More generally,

The results presented in this chapter are based on the following joint work:

• [CGZ22] Eshan Chattopadhyay, Jesse Goodman, and David Zuckerman. The space complexity of sampling. In 13th
Innovations in Theoretical Computer Science Conference (ITCS 2022), volume 215 of LIPIcs, pages 40:1–40:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022

185

we obtain sampling lower bounds for any list-decodable code, which are nearly tight. Previously, such a
result was only known for sampling with AC0 circuits. As an application of our result, a known connection
implies new data structure lower bounds for storing codewords.

In our second main result, we provide a generic way to bootstrap weak sampling lower bounds into
extremely strong sampling lower bounds. In particular, we obtain a direct product theorem for sampling with
ROBPs. Previously, no direct product theorems were known for the task of sampling, for any computational
model. A key ingredient in our proof is a simple new lemma about amplifying statistical distance between
sequences of somewhat-dependent random variables. Using this lemma, we also obtain a simple new proof
of a known lower bound for sampling disjoint sets using two-party communication protocols.

9.1 Introduction

Part III of this thesis has largely focused on extracting from samplable sources. As we have seen, these
sources take the form X = F (U), where F is just a function coming from some “low-complexity” class C.
Thus far in our journey, we have sought out explicit extractors for the class C of limited-memory algorithms
(Chapter 7) and low-depth circuits (Chapter 8). In this chapter, we do not wish to extract from yet another
class C of samplable sources. Instead, we seek out an answer to an even more fundamental question:

What do these samplable sources even “look like”?

At first glance, this question appears innocent enough, as it could certainly help us construct better extractors.
Indeed, as we have already seen (in Lemmas 7.1 and 8.1), insight into the structure of samplable sources
can greatly assist in extracting from them. However, the true motivation behind this question runs much
deeper than that. In particular, if one were to reflect upon the actual definition of samplable sources for just
a minute, one might realize that the above question is really asking,

What distributions can (and cannot) be sampled using limited computational resources?

With this interpretation in mind, it becomes clear that the pursuit of this question may unlock new applica-
tions and revelations that extend far beyond the reach of extractor theory. In fact, it is this exact question
that gave rise to an exciting new area of complexity theory, called the complexity of sampling.

The complexity of sampling

A central goal in complexity theory has always been to quantify the resources required to perform certain
tasks. Traditionally, complexity theory has focused on the task of computing. Here, one fixes a function
f : {0, 1}ℓ → {0, 1}n and computational model C (e.g., low-depth circuits), and asks for lower bounds on
the size of any F ∈ C that computes f .1 Recently, a growing body of work has instead sought to understand
the power of these same computational models for the alternative task of sampling. Now, instead of fixing a
function f , one picks a target distribution Q ∼ {0, 1}n. Then, one asks for lower bounds on the size of any
F ∈ C that samples Q.2 In other words, the goal is to understand the complexity of sampling Q.

While the origins of this question can be traced all the way back to the 80s [JVV86, AST+03, GGN10],
Viola was the first to advocate for a systematic study into the complexity of sampling [Vio12a]. The primary
motivation is easy to appreciate: While many computational tasks can be formalized as computing a specific
function f , the need to sample from a specific distribution Q also frequently arises in computer science

1We say that F computes f if F (x) = f(x) for all x.
2We say that F samples Q if F (U) = Q.

186

[Liu23, Chapter 1]. Thus, it is only natural to seek out a theory that can help us understand how our favorite
computational models perform in this common alternative task. But beyond this basic motivation, a number
of other compelling reasons have emerged to further motivate research into the complexity of sampling.

• Extractor theory: As hinted at before, understanding the complexity of sampling certain distributions
can provide valuable insight into their structure. This, in turn, can be used to greatly facilitate the
construction of extractors for such sources [DW12, Vio14, Vio12b, CG21, ACG+22].

• Complexity theory: Surprisingly, sampling lower bounds (as defined above) are more challenging to
obtain than classical lower bounds.3 Thus, their pursuit may unveil exciting new techniques and ap-
plications [Vio12a]. Indeed, this phenomenon has already been observed in several fascinating works
that exploit sampling lower bounds to obtain data structure lower bounds [Vio12a, LV12, BIL12],
and in a recent paper of Guruswami, Lyu, and Wang [GLW22] which suggests that sampling lower
bounds could help make progress on the influential range avoidance problem [KKMP21, Kor21].

• Quantum computing: Finally, it is believed that sampling problems are great candidates for demon-
strating quantum advantage [AA13, BFNV19].4 Thus, by proving new sampling lower bounds against
classical models of computation, one can make important progress towards this landmark goal in
quantum computing. In fact, this program has already been successfully executed to demonstrate
quantum advantage for a variety of restricted models of computation [AST+03, WP23].

Needless to say, a better understanding of the complexity of sampling distributions could have a huge
impact on complexity theory and beyond. As a result, ever since the seminal work of Viola [Vio12a], the
complexity of sampling has garnered a massive amount of interest [LV12, Aar14, DW12, Vio14, Vio12b,
BIL12, JSWZ13, Wat13, BCS16, Wat16, Vio16, Wat20, Vio20, GW20, CG21, BDF+22, CGZ22, ACG+22,
Vio23, FLRS23, WP23, YZ24], unveiling deep new insights into classical computational models, and un-
earthing a swath of unexpected applications. However, despite this exciting progress, results are still only
known for a few computational models like AC0 circuits and communication protocols. In particular, little
is known about the complexity of sampling with limited memory, while this remains a fundamental model
in other areas of complexity theory.

Our goal In this chapter, we aim to fill this gap, and initiate a study of the space complexity of sampling.
In order to do so, our goals are threefold. First, we need a reasonable model for sampling in limited memory.
Second, we must identify key questions whose answers would form a solid foundation for this new direction.
Third, and most importantly, we’d like to answer these key questions.

Key questions

Before we officially introduce our model (and risk boring the reader with unmotivated formalisms), let us
start by identifying some interesting questions about sampling in limited memory. We will focus on five key
questions, motivated by some fascinating observations and results that have already been discovered in the
complexity of sampling. Towards this end, let us go on a brief tour of what is known about sampling with
AC0 circuits (the most well-studied model in this new field), and place our key questions in this context.

3A formal proof of this will appear in the coming pages.
4Here, the goal is to find a problem that can’t be solved by a classical computer, but can easily be solved by a quantum computer.

187

Sampling is easier than computing A motivating paradigm in the complexity of sampling is the surpris-
ing fact that a computational model C may be more powerful at sampling than computing. In more detail,
consider fixing a function f : {0, 1}n → {0, 1}m and comparing the tasks of computing f on every input x,
with the task of sampling its output distribution f(Un) [GGN10]. Intuitively, the latter task should be easier.
Indeed, any F ∈ C that computes f is also guaranteed to have F (Un) = f(Un). On the other hand, if f
is the inverse of a one-way permutation, then f is very difficult to compute, but f(Un) is trivial to sample
[Vio12a].

Amazingly, we also have examples of simple explicit functions that demonstrate this separation.5 The
canonical example is the function f : {0, 1}n → {0, 1}n+1 defined as f(x) = (x,⊕i∈[n]xi). Here, some
of the most celebrated results in complexity theory imply that f cannot be computed in AC0 [FSS84, Ajt83,
Yao85, Hås86], yet Babai [Bab87], Boppana and Lagarias [BL87] gave an extremely simple way to sample
its output distribution in AC0. In particular, just consider the function g : {0, 1}n → {0, 1}n+1 defined as

g(x) := (x1, x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn),

and note that g is both (1) implementable in AC0, and (2) has the same output distribution as f . Thus, while
AC0 cannot compute the function f , it can certainly sample its output distribution f(Un).6 In general, this
means that sampling is strictly easier than computing, which implies that

Sampling lower bounds are more challenging to obtain than classical lower bounds,
and their pursuit may unveil exciting new techniques and applications.

As discussed at the beginning of Section 9.1, this observation has been one of the key driving forces behind
research into the complexity of sampling, and (in particular) into the pursuit of sampling lower bounds.
However, we actually only saw above that sampling is easier than computing in the context of AC0 circuits.
In this chapter, we wish to initiate a systematic study into the complexity of sampling with limited memory,
and thus it is natural to ask whether the above motivation still holds in this new setting.

Question 9.1. Does there exist an explicit Boolean function b : {0, 1}n → {0, 1} such that (x, b(x)) is hard
to compute with limited memory, but (Un, b(Un)) is easy to sample with limited memory?

Sampling lower bounds against input-output pairs In the discussion leading up to our first question,
we saw that for the parity function b : {0, 1}n → {0, 1}, it holds that (x, b(x)) is hard to compute in AC0,
yet (Un, b(Un)) is easy to sample in AC0. Given this observation, Viola raised the challenge of finding an
explicit distribution of the form (Un, b(Un)) that is hard to sample in AC0 [Vio12a]. The following year, he
demonstrated exactly such a distribution [Vio14], showing that AC0 circuits cannot sample (Un, b(Un)) if
b is an extractor for 1-local sources (Chapter 8). Nearly a decade later, Viola greatly strengthened this result
[Vio20], proving that any distribution generated by an AC0 circuit is, in fact, extremely far in statistical
distance from the above distribution.7 More formally, he showed that if b : {0, 1}n → {0, 1} is a good
enough extractor for 1-local sources, then for any AC0 circuit F : {0, 1}ℓ → {0, 1}n+1, it holds that

|F (Uℓ)− (Un, b(Un))| ≥
1

2
− 2−n

Ω(1)
.

5We don’t actually know if one-way functions (not to mention one-way permutations) exist: this would imply P ̸= NP [Gol01].
6In fact, this can be extended to show that AC0 can sample (Un, b(Un)) for any symmetric function b (including majority) up

to an exponentially small error [Vio12a], in addition to some other classically hard functions such as inner product (mod 2) [IN96].
7One might expect that a low-error extractor for 1-local sources would immediately yield such a result, but several technical

issues arise with such an approach. Instead, Viola’s argument relies on a sophisticated method of polarizing min-entropy [Vio20].

188

Assuming Question 9.1 can be answered positively, it is natural to ask whether a similar result can be
established for sampling in the limited memory setting. In particular, our second question is as follows.

Question 9.2. Does there exist an explicit Boolean function b : {0, 1}n → {0, 1} such that (Un, b(Un)) is
hard to sample with limited memory?

Sampling lower bounds against general distributions It is easy to see that sampling lower bounds for
distributions of the form (Un, b(Un)) cannot exceed 1/2, since (Un, 0) or (Un, 1) will always yield an an
upper bound of 1/2, and both are trivial to sample (using any reasonable model of computation). A comple-
mentary question, suggested by Viola [Vio12a], is to find other natural distributions Q ∼ {0, 1}n with much
stronger sampling lower bounds - perhaps even approaching 1. In 2012, Lovett and Viola demonstrated an
explicit distribution Q of exactly this type, showing that for any AC0 circuit F : {0, 1}ℓ → {0, 1}n, it holds
that

|F (Uℓ)−Q| ≥ 1− ε,

where ε = n−Ω(1) [LV12]. In a subsequent work, Beck, Impagliazzo, and Lovett greatly improved this lower
bound on statistical distance, achieving ε = 2−n

Ω(1)
for the exact same explicit distribution Q [BIL12].

Given this huge success in obtaining extremely strong sampling lower bounds against general distributions
for AC0 circuits, we must ask whether the same can be done for sampling in limited memory.

Question 9.3. Does there exist an explicit distribution Q ∼ {0, 1}n that is extremely hard to sample with
limited memory?

Sampling lower bounds against codes As it turns out, the distribution Q ∼ {0, 1}n that yields the
strong sampling lower bounds against AC0 circuits (discussed above) is not only explicit, but also extremely
natural. In particular, Lovett and Viola [LV12] and Beck, Impagliazzo, and Lovett [BIL12] achieve the
abovementioned results by setting Q to be uniform over the elements of an asymptotically good error-
correcting code.8 In doing so, they obtain a number of wonderful consequences, which would not have been
possible had they used a more artificial distribution.

• They provide valuable new insight into the structure of error-correcting codes, one of the most funda-
mental objects spanning coding theory, pseudorandomness, complexity theory, and beyond [GRS22].

• Using an observation of Viola [Vio12a], they obtain new data structure lower bounds for storing
codewords: a classical real-world task that arises whenever data must be written to an unreliable disk.

• They obtain a complexity separation between sampling with AC0 circuits [Vio12a] and sampling with
communication protocols [GW20], since the latter can trivially sample (certain) good codes.

In addition to these consequences, proving sampling lower bounds against good codes has turned out to be
a surprisingly fundamental task, as the quantum analog of this question played a crucial role in the recent
breakthrough resolution of the NLTS conjecture [ABN23].9 Given all of this, even if we can manage to
find some explicit distribution Q that is extremely hard to sample in limited memory (and thereby positively
answer Question 9.3), we would really like to know if this is true when Q is uniform over a good code.

Question 9.4. Are good codes hard to sample with limited memory?
8An error-correcting code (Definition 2.8) is said to be asymptotically good if it has constant relative distance and constant rate.
9The NLTS conjecture, short for No Low-energy Trivial State conjecture, was a fundamental barrier blocking a resolution of the

quantum PCP conjecture [AAV13], which remains one of the most important open problems in quantum complexity theory.

189

Sampling lower bounds via direct product theorems Thus far, our questions have asked for small-space
analogs of several key results known for the complexity of sampling in AC0. For our final question, we ask
for a type of result that has yet to be studied in the complexity of sampling, but which has been well-explored
in the context of classical complexity theory. In particular, we ask for a direct product theorem.

In classical complexity, direct product theorems (e.g., Yao’s XOR Lemma [Yao82]) are key tools that
are used for hardness amplification: such a result roughly says that if a function f is somewhat hard to
compute for a given computational model, then t independent copies of f are very hard to compute for that
same model. Direct product theorems offer a simple and concrete way to (i) construct simple functions with
strong (average-case) lower bounds, and thus (ii) establish strong (average-case) complexity separations
between complexity classes. As a result, direct product theorems have been heavily examined throughout
the history of classical complexity theory [Yao82, IRW94, Raz98, Sha04b, LSŠ08, Ema08, Kla10, Jai15],
and have become a fundamental tool in every theorist’s toolbox. Despite this, prior to our work,

No direct product theorems were known for the task of sampling.

In the context of sampling, a direct product theorem can be defined as a result which asserts the following: If
a distribution Q ∼ {0, 1}n has statistical distance δ from any distribution sampled by some computational
model, then t independent copies of Q (concatenated together) have statistical distance ≫ δ from any
distribution sampled by that same model. While no direct product theorems were known for sampling with
any computational model, we focus here on sampling with limited memory. Thus, our final question is:

Question 9.5. Can a direct product theorem be established for distributions sampled with limited memory?

This completes our brief tour of some of the most well-known results on sampling with AC0 circuits, and
finishes our presentation of the five key questions we wish to answer about sampling with limited memory.
In this chapter, we make significant progress on each of these five questions. But before we present our
results, we must first discuss our model for sampling distributions with limited memory.

The model

To model sampling with limited memory, we use the classic model of oblivious read-once branching pro-
grams (ROBPs). This model corresponds to the streaming model of computation, and thus a better under-
standing of the power of ROBPs for sampling may provide new insights and tools for streaming algorithms.
In what follows, we give a formal definition of this model, and relate it to small-space sources (Chapter 7).

Computing with ROBPs Read-once branching programs (ROBPs) may very well be the most popular
model for computing with limited memory. An ROBP of width w and length ℓ is just a directed acyclic
graph G = (V,E) with ℓ + 1 layers V = V0 ∪ V1 ∪ · · · ∪ Vℓ, each holding at most w vertices. For every
i ∈ [ℓ], each vertex v ∈ Vi−1 has two outgoing edges into the next layers: one labeled 0, and one labeled 1.
Some vertex in V0 is labeled vstart, and some vertex in Vℓ is labeled vaccept. The ROBP computes a function
F : {0, 1}ℓ → {0, 1} in the natural way: given an input x ∈ {0, 1}ℓ, it follows the path with edge labels
corresponding to x1, x2, . . . , xℓ, and outputs 1 if and only if the path arrives at vaccept.

Sampling with ROBPs To model sampling with limited memory, we would like to use the same computa-
tional model as above, and just replace its input with uniform bits. However, this ROBP computes a function
F : {0, 1}ℓ → {0, 1}, and so the distribution F (Uℓ) it samples will be over {0, 1}. To sample general dis-
tributions Q ∼ {0, 1}n, we need an ROBP that can compute multi-output functions F : {0, 1}ℓ → {0, 1}n.

190

Towards this end, perhaps the most natural way to extend an ROBP to output multiple bits is to simply
allow it to output a sequence of bits upon reading any input bit. More formally, we can assign each edge
in the ROBP an additional label consisting of a string of output bits. Then, given an input x ∈ {0, 1}ℓ,
the ROBP can traverse a path in the usual manner, but now output all the output labels seen along the
way.10 Now, while this may be the most obvious way to define multi-output ROBPs, one problem arises:
with this definition alone, different paths through the ROBP may yield a different number of output bits. To
guarantee that the ROBP will compute a function of the form F : {0, 1}ℓ → {0, 1}n, we make one additional
simplifying assumption: just as the inputs in an ROBP are “layered,” we will assume that the outputs are
also layered. That is, we require any two edges traversing between the same two layers to be labeled with the
same number of output bits. This completes our definition of multi-output ROBP (see Definition 9.3 a more
formal definition). To sample a distribution using it, we simply replace its input with uniformly random bits.

Just as a standard ROBP models an algorithm that reads from an input stream, multi-output ROBPs also
allow the algorithm to write to an output stream: this is because a multi-output ROBP can write an arbitrary
number of bits at each time step, without storing any of them in its memory. Furthermore, note that for
functions with one bit of output, our definition is equivalent to the classic single-bit-output ROBP definition.
Thus, we will henceforth refer to multi-output ROBPs simply as ROBPs.

An equivalence theorem Finally, as described at the beginning of Section 9.1, a fundamental goal in
studying the complexity of sampling is to understand the different types of distributions that can be sampled
if we take one of our favorite computational models F ∈ C, and replace its input with uniformly random
bits. As such, the model we use for sampling in limited memory is just an ROBP fed with uniformly random
bits. However, a dedicated reader of this thesis might recall that in Chapter 7, we studied a different model
of distributions that can be sampled in limited memory, known as small space sources (Definition 7.2). And
while ROBPs are the classical way to model limited-memory computation in complexity theory, small-space
sources are the classical way to model limited memory distributions in extractor theory.

Thus, we have a sticky situation where there are two different, equally canonical, ways to model sam-
pling with limited memory: one that is favored by complexity theorists (feeding uniform bits into an ROBP),
and one that is favored by extractor theorists (small-space sources). Is there any way to reconcile these two
notions? As it turns out, the answer is a resounding yes. In fact, up to a negligible loss in parameters, the two
notions are equivalent. We ultimately prove the following, which will be instrumental to our main results.11

Theorem 9.0 (Equivalence theorem). For any distribution X ∼ {0, 1}n and ε > 0, the following hold.
If there is an ROBP of width w that samples X, then X is a small-space source of width 2w. If X is a
small-space source of width w, then there is an ROBP of width 7w that samples a distribution ε-close to X.

Notice that the above theorem makes no reference to the input length ℓ of the ROBP. Indeed, like most
results in the complexity of sampling, the sampling power of a computational model is not significantly
affected by its input length, only its size (which, here, corresponds to the width of the ROBP). Furthermore,
we remark that the error ε appearing in Definition 7.2 is just an artifact from the fact that small-space sources
can assign irrational probabilities to elements in their support, while ROBPs can only sample distributions
that are more granular. Notably, ε > 0 can taken to be arbitrarily small at no cost, and can even be
eliminated in many cases. In Section 9.3, we give a detailed exposition of Theorem 9.0, and prove several
other equivalence theorems between various models for sampling and computing with limited memory.

10This is exactly a read-once version of multi-output branching programs studied in the classical works [BFK+81, BC82, Bea91].
11In Theorem 9.0, a small-space source of width w simply refers to a space s := log(w) source (Definition 7.2).

191

9.2 Our results

With our questions in mind and our model formally defined, we are ready to state our results. As promised,
we launch a systematic study of the space complexity of sampling. In order to do so, we provide positive an-
swers to all five questions from Section 9.1. Question 9.1, Question 9.2, and Question 9.3 (“the basics”) are
straightforward to answer, by applying easy-to-prove lower bounds from communication complexity. On the
other hand, Question 9.4 (sampling lower bounds against codes) and Question 9.5 (sampling lower bounds
via direct product theorems) are more challenging to resolve, and we view these as our main contributions.

The basics

To start things off, let us present our formal, positive answers to the first three questions from Section 9.1. In
our first main theorem, we demonstrate an explicit function that is very difficult to compute using ROBPs,
but extremely easy to sample. In other words, we provide a positive answer to Question 9.1.

Theorem 9.1 (Sampling is easier than computing). There exists an explicit function b : {0, 1}n → {0, 1}
such that for any ε > 0 and ROBP F : {0, 1}n → {0, 1} of width at most 2

nε2

9
−log(1/ε),

Pr
x
[F (x) = b(x)] <

1

2
+ ε,

but there exists an ROBP G : {0, 1}ℓ → {0, 1}n+1 of width 2n and length ℓ ≤ n+ log n+ 2 such that

G(Uℓ) = (Un, b(Un)).

The explicit function we use above is the notorious address function,12 which has a rich history in
proving lower bounds against various computational models [Sav98]. Given Theorem 9.1, we see that just
like with AC0, sampling with ROBPs is strictly easier than computing. As a result, sampling lower bounds
for ROBPs will be strictly more challenging to obtain than classical lower bounds. Next, we demonstrate an
explicit function that is not only hard to compute, but also hard to sample, answering Question 9.2.

Theorem 9.2 (Sampling lower bounds against input-output pairs). There exists an explicit function b :
{0, 1}n → {0, 1} such that for any ROBP F : {0, 1}ℓ → {0, 1}n+1 of width at most 2n/16,

|F (Uℓ)− (Un, b(Un))| ≥
1

2
− 128 · 2−n/16.

The explicit function we use above is the inner product (mod 2) function IP, and the proof that it works
simply follows from the fact that it is a good low-error two-source extractor [CG88]. Surprisingly, however,
(Un, IP(Un)) can be sampled in AC0 [IN96], and thus the above result gives a simple distribution that can
be sampled by AC0 circuits, but cannot be sampled by ROBPs of width 2Ω(n). Furthermore, we prove an
equivalence theorem (Theorem 9.8) which shows that sampling lower bounds against distributions of the
form (Un, b(Un)) immediately yield correlation bounds against b for ROBPs. By instantiating this theorem
with Theorem 9.2, we obtain as a corollary an alternate proof of the known result that inner product (mod 2)
has exponentially small correlation with ROBPs of exponential width. Finally, for our last basic theorem, we
show how to boost the above sampling lower bounds to be exponentially close to 1, answering Question 9.3.

12The address function b : {0, 1}k × [k] → {0, 1} is simply defined as b(x, i) := xi. The address function is also known as the
index function or the multiplexer function, and is a specialization of the well-known Andreev’s function [And87].

192

Theorem 9.3 (Sampling lower bounds against general distributions). There exists an explicit distribution
Q ∼ {0, 1}n such that for any ROBP F : {0, 1}ℓ → {0, 1}n of width at most 2n/12,

|F (Uℓ)−Q| ≥ 1− 16 · 2−n/12.

As it turns out, the distribution Q ∼ {0, 1}n that witnesses this lower bound is remarkably simple: it’s
just the concatenation of two copies of the same uniform random variable (Un/2,Un/2). Since AC0 can
clearly sample this distribution, Theorem 9.3 gives an even easier way to separate AC0 circuits and ROBPs
of width 2Ω(n) for the task of sampling. This concludes the discussion of our three basic theorems, which
answer Questions 9.1 to 9.3. Together, they provide a solid foundation to study the space complexity of
sampling, and set the stage for our two main results.

Sampling lower bounds against codes

In our first main theorem, we show it is hard to sample good codes using ROBPs. More generally, we obtain
the following sampling lower bounds against any (n, k, d) code, which are nearly tight.

Theorem 9.4 (Sampling lower bounds against codes). Let Q ∼ {0, 1}n be uniform over an (n, k, d) code.
Then for any ROBP F : {0, 1}ℓ → {0, 1}n of width w,

|F (Uℓ)−Q| ≥ 1− 12w · 2−
kd
4n .

Remark 9.1 (Tightness - Theorem 9.15, informal). We show Theorem 9.4 is nearly tight, in the sense that
for almost all n, k, d, there exists an (n, k, d) code that can be sampled by an ROBP of width 2Õ(kd

n
).

As a corollary, we immediately get that any distribution sampled by an ROBP of exponential width has
statistical distance exponentially close to 1 from a good code, answering Question 9.4. We remark that these
sampling lower bounds against codes for ROBPs are stronger than the best known sampling lower bounds
against codes for AC0. In particular, the best sampling lower bounds against good codes for AC0 are of the
form 1− 2−n

Ω(1)
[BIL12], and the authors leave as an open problem whether similar lower bounds for AC0

can be obtained against (n, k, d) codes with kd ≥ n1+Ω(1). On the other hand, our sampling lower bounds
against good codes are of the form 1 − 2−Ω(n) for ROBPs of width 2Ω(n), and we obtain lower bounds of
the form 1− 2−n

Ω(1)
against (n, k, d) codes with kd ≥ n1+Ω(1) for ROBPs of width 2n

Ω(1)
. Finally, we note

that we actually obtain a more general version of Theorem 9.4, which works for any list-decodable code
(Theorem 9.16). We refer the reader to Section 9.5 for more details.

Applications to data structure lower bounds By applying a known connection between sampling lower
bounds and data structure lower bounds [Vio12a], our sampling lower bounds immediately yield tight data
structure lower bounds for storing codewords succinctly and retrieving them using ROBPs (Section 9.7).

Corollary 9.1 (Data structure lower bounds). For any good code Q ⊆ {0, 1}n of dimension k, there is a
constant c > 0 such that if we can store codewords ofQ using k+r bits so that a codeword can be computed
by an ROBP F : {0, 1}k+r → {0, 1}n of width at most 2cn, then we must have redundancy r ≥ ⌊cn⌋.

The above corollary shows that if one wishes to store codewords that are retrievable by a width 2Ω(n)

ROBP, they must use Ω(n) extra bits of redundancy. This is tight up to constant factors, since (1) It is easy
to store codewords that are retrievable by a width 2n ROBP using 0 extra bits of redundancy, and (2) It is
easy to store codewords that are retrievable by a width 1 ROBP using n − k extra bits of redundancy. We

193

remark that these data structure lower bounds for storing codes and retrieving them using ROBPs is stronger
than the best known data structure lower bounds for storing codes and retrieving them using AC0 circuits. In
particular, for ROBPs of exponential width 2Ω(n), we show that r ≥ Ω(n) bits of redundancy are necessary,
whereas the best known result for AC0 requires r ≥ nΩ(1) bits of redundancy [BIL12].

Applications to separating ROBPs and communication protocols Finally, it is worth noting that our
sampling lower bounds provide a simple family of distributions that separate ROBPs and two-party com-
munication protocols for the task of sampling. In particular, if we let X ∼ {0, 1}n/2 be any good code, and
let 0 ∈ {0, 1}n/2 denote the all zeroes vector, it is straightforward to show that two-party communication
protocols can exactly sample (X,0) with 0 bits of communication, whereas Theorem 9.4 implies that any
ROBP of width 2Ω(n) samples a distribution with statistical distance 1 − 2−Ω(n) from (X,0). This high-
lights the fact that the sampling lower bounds established in Theorem 9.4 cannot be obtained via results
from communication complexity, unlike the bounds obtained in Theorems 9.1 to 9.3.

Sampling lower bounds via direct product theorems

Our second main theorem is a direct product theorem, answering Question 9.5. This gives a generic way
to construct distributions with strong sampling lower bounds against ROBPs. Informally, we show that if a
distribution Q is even a little hard to sample for ROBPs, then the distribution Q⊗t (defined as a sequence of
t independent copies of Q) is extremely hard to sample for ROBPs. More formally, we prove the following.

Theorem 9.5 (Direct product theorem). Let Q ∼ {0, 1}n be a distribution such that for any ROBP F :
{0, 1}ℓ → {0, 1}n of width w, it holds that |F (Uℓ) − Q| ≥ δ. Then for any t ∈ N and ROBP F ∗ :
{0, 1}ℓ∗ → {0, 1}nt of width w, it holds that

|F ∗(Uℓ∗)−Q⊗t| ≥ 1− e−tδ2/4.

In particular, Theorem 9.5 gives a way to boost statistical distance lower bounds of the form δ > 0 (some
tiny constant) to lower bounds of the form 1 − 2−Ω(t). Moreover, a notable feature of our direct product
theorem is that it is strong, in the sense that the statistical distance blows up even if the ROBP keeps all of its
width (one usually needs to sacrifice some computational power in order to get such hardness amplification).

A simple new lemma on amplifying statistical distance A key ingredient in the proof of our direct
product theorem is a simple new lemma on amplifying statistical distance between sequences of somewhat-
dependent random variables. To the best of our knowledge, no such lemma was previously known, and we
believe it may be of independent interest.

Lemma 9.1. Let X ∼ V n and Y ∼ V n each be a sequence of random variables over V , where elements
in the sequence need not be independent. Suppose that for every i ∈ [n] and v ∈ V i−1,

|(Xi | X<i = v)− (Yi | Y<i = v)| ≥ δ.

Then
|X−Y| ≥ 1− e−nδ2/2.

The proof of Lemma 9.1 is not difficult: we simply prove an analogous result over a more amenable
notion of distance, known as the Bhattacharyya coefficient, and use estimates on statistical distance (in
terms of the Bhattacharyya coefficient) to obtain the desired result. Despite its simple proof, we believe that
it could be a useful tool for proving lower bounds. In particular, we discuss one such application, below.

194

Applications to sampling with two-party communication protocols As an application of the above
lemma, we obtain a simple new proof of a known result on sampling lower bounds for two-party communi-
cation protocols [GW20]. In particular, we provide in Section 9.8 a short, self-contained proof that for any
distribution X ∼ {0, 1}n ×{0, 1}n sampled by two-party communication protocols with Ω(n) bits of com-
munication, it holds that X has statistical distance 1− 2−Ω(n) from the distribution Q ∼ {0, 1}n × {0, 1}n
that is uniform over pairs of disjoint strings. This concludes the presentation of our main results.

Organization

The remainder of this chapter is organized as follows. We start by providing formal definitions for all
our models of computing and sampling in Section 9.3, where we also prove a host of useful equivalence
theorems (including Theorem 9.0). In Section 9.4, we prove our three basic results on the space complexity
of sampling (Theorems 9.1 to 9.3), providing a solid foundation on which to build our two main results.
We prove our two main results in the following two sections. In particular, we obtain our sampling lower
bounds against codes (Theorem 9.4) in Section 9.5, and we prove our direct product theorem (Theorem 9.5)
in Section 9.6. Finally, we give some applications of our results in data structure lower bounds (Section 9.7)
and communication complexity (Section 9.8), and conclude with some open problems (Section 9.9).

9.3 The models

We are now ready to begin the technical portion of the chapter. This section will be dedicated to formalizing
our models and establishing useful relationships between them. We start with our models for computing in
small space in Section 9.3.1, and define our models for sampling in small space in Section 9.3.2. Finally,
in Section 9.3.3 we prove a variety of equivalence theorems (including Theorem 9.0), which demonstrate
important relationships these models. These theorems are very useful, and exploited throughout the chapter.

9.3.1 Computing in small space

Let us now proceed to define our formal models for computing in small space. Here, read-once branching
programs (ROBPs) may very well be the simplest and most popular model. We gave an informal description
of them in Section 9.1, and provide a formal definition of this model below.

Definition 9.1 (ROBP). An ROBP B of width w and length ℓ is a directed acyclic graph G = (V,E)
consisting of ℓ+ 1 disjoint layers V = V0 ∪ V1 ∪ · · · ∪ Vℓ, each holding w vertices. For every i ∈ [ℓ], each
vertex v ∈ Vi−1 has exactly two outgoing edges into Vi, one of which is labeled 0, and the other labeled 1.
There is a designated start vertex vstart ∈ V0, and a designated accept vertex vaccept ∈ Vℓ. The ROBP B
computes a function fB : {0, 1}ℓ → {0, 1} as follows. On input x ∈ {0, 1}ℓ, the program starts at vstart and
traverses the unique path P (x) whose edges are labeled with input bits x1, x2, . . . , xℓ. The program outputs
1 if P (x) terminates on vaccept, and 0 otherwise.

ROBPs are useful for computing Boolean functions f : {0, 1}ℓ → {0, 1}. But if we wish to use ROBPs
to sample distributions over {0, 1}n, we need to extend the definition of ROBPs to model the computation
of functions f : {0, 1}ℓ → {0, 1}n with multi-bit outputs. A first attempt might look like the following.

Definition 9.2 (Σ-ROBP). A Σ-ROBP B of width w and length ℓ is identical to an ROBP with the same
parameters (as per Definition 9.1), except instead of having a designated accept vertex vaccept ∈ Vℓ, each
vertex v ∈ Vℓ is labeled with an element of Σ. The Σ-ROBP B computes a function fB : {0, 1}ℓ → Σ as

195

follows. On input x ∈ {0, 1}ℓ, the program starts at vstart and traverses the unique path P (x) whose edges
are labeled with input bits x1, x2, . . . , xℓ. Then, it outputs the label (in Σ) of the final vertex on this path.

By setting Σ to {0, 1}n, a Σ-ROBP can certainly compute functions of the form f : {0, 1}ℓ → {0, 1}n.
However, upon further inspection, such ROBPs have an inherent flaw: the number of possible strings they
can output is naturally limited by their width. Thus, while Σ-ROBPs have certain use cases, we would really
like a better way to extend Definition 9.1 to an even more general definition of multi-output ROBPs, whose
output length is not limited in such a way. We use the following definition, which can be thought of as a
read-once version of classical multi-output branching programs [BFK+81, BC82, Bea91].

Definition 9.3 (Multi-output ROBP). A multi-output ROBP B of width w and (input) length ℓ is a directed
acyclic graph G = (V,E) consisting of ℓ + 1 disjoint layers V = V0 ∪ V1 ∪ · · · ∪ Vℓ, each holding w
vertices. For every i ∈ [ℓ], each vertex v ∈ Vi−1 has exactly two outgoing edges into Vi, one of which is
labeled with the input bit 0, and the other labeled with the input bit 1. Each edge e is also labeled with
output bits Γ(e) ∈ {0, 1}∗, and we assume that all edges e between the same two layers Vi−1, Vi have the
same output length |Γ(e)| = γi ≥ 0. The output length of B is n =

∑
i γi. Finally, there is a designated

start vertex vstart ∈ V0. The ROBP B computes a function fB : {0, 1}ℓ → {0, 1}n as follows. On input
x ∈ {0, 1}ℓ, the program starts at vstart and traverses the unique path P (x) whose edges are labeled with
input bits x1, x2, . . . , xℓ. The program outputs the concatenation of all output bits seen along this path, so
that fB(x) = (Γ(e))e∈P (x).

It is straightforward to verify that Definition 9.3 generalizes Definition 9.2, which generalizes Defini-
tion 9.1. Going forward, we will use Definition 9.3 for our definition of multi-output ROBPs, and will omit
the qualifier “multi-output” when referring to them. For brevity, we will also sometimes call a function
f : {0, 1}ℓ → {0, 1}n an ROBP, when we really mean that f is the function computed by an ROBP.

9.3.2 Sampling in small space

Now that we have our models for computing in small space formally defined, we are ready to discuss our
formal models for sampling in small space. We start with the main motivating model that we study in this
chapter, which simply involves feeding uniform bits into an ROBP.

Definition 9.4 (ROBP sampler). An ROBP sampler B of width w and input length ℓ and output length n is
just an ROBP with the same parameters (as per Definition 9.3). The distribution X ∼ {0, 1}n sampled by
the ROBP B is simply X = fB(Uℓ), where fB is the function computed by B.

While Definition 9.4 may be the most natural way to define sampling in small-space to a complexity
theorist, an avid reader of this thesis may recall that we have already defined an alternative model for
small-space samplers, which has received much more attention from the extractor community. In particular,
in Chapter 7, we studied the model of small-space sources, first introduced by Kamp, Rao, Vadhan and
Zuckerman [KRVZ11]. We will also study small-space sources in this chapter, but will refer to them as
KRVZ samplers, to emphasize that we are treating them as samplers instead of sources.

Definition 9.5 (KRVZ sampler - Definition 7.2, restated). A KRVZ sampler B of width w and output length
n is a directed acyclic graph G = (V,E) consisting of n+ 1 disjoint layers V = V0 ∪ V1 ∪ · · · ∪ Vn, each
holding w vertices. For every i ∈ [n], each vertex v ∈ Vi−1 has an arbitrary number of outgoing edges into
Vi, some of which are labeled 0, and the rest labeled 1. There is a designated start vertex vstart ∈ V0, and
each vertex v ∈ V has a probability distribution pv over its outgoing edges. The distribution X ∼ {0, 1}n
sampled by B is the one generated by taking a random walk over B, which starts at vstart, transitions
according to {pv}, and outputs the edge labels seen along the way.

196

In Section 9.3.3, we will show that ROBP samplers and KRVZ samplers are equivalent (up to a small loss
in parameters), thereby unifying the two most natural models from the worlds of complexity and extractor
theory. Next, throughout this chapter, we also prove sampling upper bounds to show the tightness of our
results. To obtain our upper bounds, we will construct KRVZ samplers that come close to sampling certain
distributions. As it turns out, our upper bounds will actually be even stronger, and we will show it often
suffices to use a weaker model of sampling, which we call a simple sampler. It is identical to the KRVZ
sampler, except that each vertex in the branching program is restricted to have out-degree exactly two.

Definition 9.6 (Simple sampler). A simple sampler B of width w and output length n is a directed acyclic
graph G = (V,E) consisting of n+1 disjoint layers V = V0 ∪ V1 ∪ · · · ∪ Vn, each holding w vertices. For
every i ∈ [n], each vertex v ∈ Vi−1 has exactly two outgoing edges into Vi, one of which is labeled 0, and
the other labeled 1. There is a designated start vertex vstart ∈ V0, and each vertex v ∈ V has a probability
distribution pv over its outgoing edges. The distribution X ∼ {0, 1}n sampled by B is the one generated
by taking a random walk over B, which starts at vstart, transitions according to {pv}, and outputs the edge
labels seen along the way.

For brevity, we sometimes call a distribution X ∼ {0, 1}n an (ROBP, KRVZ, simple) sampler, when we
really mean that X is the distribution sampled by an (ROBP, KRVZ, simple) sampler. For our final definition
of this section, we introduce the following variant of KRVZ and simple samplers, which will be important
whenever we need to show that these can be simulated by ROBP samplers.

Definition 9.7 (Granular sampler). A KRVZ or simple sampler is called α-granular if each edge probability
is an integer multiple of α, and if α = 2−t for some t ∈ N, we simply refer to such a sampler as granular.

Now that we have all of our models for sampling in small space defined, we record some basic but useful
facts about KRVZ and simple samplers. First, we show a big enough simple sampler can sample anything.

Fact 9.1. Any distribution X ∼ {0, 1}n can be sampled by a simple sampler of width w = |support(X)|.

Proof. We construct the simple sampler B, consisting of graph G = (V,E), as follows. Let V = V0 ∪ V1 ∪
· · · ∪ Vn, where V0 consists of the single start vertex vstart and Vi := support(X1→i) ⊆ {0, 1}i for each
i ∈ [n]. Then for each u ∈ Vi−1 and (u, b) ∈ Vi, draw an edge from u to (u, b), label it with bit b, and give
it probability Pr[X1→i = (u, b) | X1→i−1 = u].

Since KRVZ samplers strictly generalize simple samplers, it immediately follows from Fact 9.1 that any
KRVZ sampler can also sample any distribution. However, we record this result anyway, since we will give
a different proof that allows for more flexibility when designing granular KRVZ samplers.

Fact 9.2. Any distribution X ∼ {0, 1}n can be sampled by a KRVZ sampler of width w = |support(X)|.

Proof. We construct the simple sampler B, consisting of graph G = (V,E), as follows. Let V = V0 ∪
V1 ∪ · · · ∪ Vn, where V0 consists of the single start vertex vstart, and each Vi, i ∈ [n] is a fresh copy of
support(X) ⊆ {0, 1}n. For each v ∈ V1, draw an edge from vstart to v, label it with the bit v1, and give it
probability Pr[X = v]. Then, for every i ∈ [n − 1] and v ∈ Vi, draw an edge from v to its copy in Vi+1,
label it vi+1, and give it probability 1.

For our final fact about KRVZ and simple samplers, we note that if two distributions can be sampled by
one of these samplers in width w, then so can the concatenation of these two distributions.

197

Fact 9.3. Let X ∼ {0, 1}n,Y ∼ {0, 1}k be independent distributions that can each be sampled by a KRVZ
(simple) sampler of width w. Then the distribution (X,Y) can be sampled by a KRVZ (simple) sampler of
width w. Moreover, if the samplers for X and Y were α-granular, then so is the sampler for (X,Y).

Proof. This is almost immediate from Definition 9.6 and Definition 9.5. In particular, simply wire the two
samplers for X and Y in a series configuration, and merge their boundaries.

This concludes the formal introduction of the models that will be used in this chapter for both computing
and sampling. Next, we prove a host of theorems that establish useful relationships between them.

9.3.3 Equivalence theorems

Throughout this chapter, we make use of several equivalence theorems, which establish important relation-
ships between the various models introduced in Sections 9.3.1 and 9.3.2 for sampling and computing in
limited memory. At a high level, we prove three different types of equivalence theorems.

• Equivalence theorems between ROBP samplers and KRVZ samplers: We prove that ROBP sam-
plers and KRVZ samplers are equivalent, up to a small loss in parameters. That is, we prove the
formal version of Theorem 9.0 (Theorem 9.6), along with a few minor variants that achieve better
parameters in certain settings. We will heavily exploit these theorems through this chapter, as they
allow us to focus on proving sampling results for the most friendly model (usually KRVZ samplers),
and immediately obtain equivalent results for less friendly models (usually ROBP samplers).

Equivalence theorems between simple samplers and ROBP computers for input-output pairs:
We prove that sampling a distribution (Un, b(Un)) with a simple sampler is equivalent to computing
the function bwith an ROBP. We obtain both worst-case and average-case versions of this equivalence
(Theorems 9.7 and 9.8), which provide a way to convert sampling lower bounds into hard functions
for ROBPs.

• Equivalence theorems between simple samplers and ROBP computers for flat distributions: We
prove that sampling a distribution Q ∼ {0, 1}n that is uniform over some set S with a simple sampler
is equivalent to computing the indicator of S with an ROBP. We obtain both worst-case and average-
case versions of this equivalence (Theorems 9.9 and 9.10), which provide another way to convert
sampling lower bounds into hard functions for ROBPs.

We hope that these equivalence theorems are useful in future work, and we exploit them heavily through-
out this chapter. However, we remark that they are a bit tedious to prove, and are not our main focus. Thus,
after briefly glancing at the statements of theorems referenced above, the reader should feel free to skip
their proofs and proceed to Section 9.4, where we begin a formal exposition of the main results quoted in
Section 9.2. With that being said, let’s continue onwards with the proofs of our equivalence theorems.

Equivalence theorems between ROBP samplers and KRVZ samplers

In our first and most important equivalence theorem, we show that ROBP samplers and KRVZ samplers are
equivalent, up to a small loss in parameters. As a reminder from Section 9.3.2, KRVZ samplers are the same
thing as small-space sources, and thus this equivalence theorem is exactly the one advertised in Section 9.1.

Theorem 9.6 (Equivalence theorem between ROBP samplers and KRVZ samplers - Theorem 9.0, formal).
For any distribution X ∼ {0, 1}n,

198

• If there is an ROBP of width w and input length ℓ that samples X, then there exists a KRVZ sampler
of width 2w that samples X.

• If there exists a KRVZ sampler of width w that samples X, then for any ε > 0, there exists an ROBP
of width 7w and input length ℓ = 8nw log(nw/ε) that samples a distribution that is ε-close to X.

In many settings, the second bullet of the above theorem will be applied to a KRVZ sampler that is
α-granular (Definition 9.7), for some α = 2−t and t ∈ N. In this case, we can strengthen this result to get an
ROBP of width 7w and input length ℓ = 4nwt that exactly samples X. Furthermore, we will also provide an
alternative version of the second bullet that saves on input length at the cost of a greater blow-up in width.

Let us now turn towards proving Theorem 9.6. For convenience, we isolate its first bullet as follows.

Lemma 9.2 (ROBP sampler =⇒ KRVZ sampler). For any X ∼ {0, 1}n, if there exists an ROBP of width
w and input length ℓ that samples X, then there exists a KRVZ sampler of width 2w that samples X.

To prove this, we will need to show that KRVZ samplers can efficiently simulate ROBP samplers. In other
words, we need to transform an ROBP sampler into a KRVZ sampler that generates the same distribution.
This will require some basic local modifications to the ROBP sampler, but not any complex machinery.

The second bullet in Theorem 9.6 will be more challenging to prove. Here, we need to show that ROBP
samplers can efficiently simulate KRVZ samplers; or rather, that any KRVZ sampler can be transformed
into an ROBP sampler that generates the same distribution. This transformation will proceed in two stages.

The first stage addresses the following issue: a KRVZ sampler can generate distributions that assign cer-
tain elements arbitrarily precise probabilities (since its edges may be assigned probabilities that are arbitrary
reals), whereas the distribution generated by an ROBP sampler has some fundamental limit to its precision
(the probability assigned to any element will be an integer multiple of 2−ℓ, where ℓ is the input length of the
ROBP). Thus, the distributions generated by ROBP samplers are inherently “granular,” so if we would like
to transform a KRVZ sampler into an ROBP sampler, we would first like to transform the KRVZ sampler
into a granular KRVZ sampler (as per Definition 9.7), without introducing too much error. As it turns out,
Kamp, Rao, Vadhan, and Zuckerman proved a lemma of exactly this type (in the language of small space
sources), which we use as the first stage of our transformation.

Lemma 9.3 (KRVZ sampler =⇒ granular KRVZ sampler [KRVZ11, Lemma 8.4]). Let X ∼ {0, 1}n be
a KRVZ sampler of width w. For any α = 1/A with A ∈ N, there exists an α-granular KRVZ sampler
X∗ ∼ {0, 1}n of width w that is (αnw)-close to X.

After we use the above lemma to make our KRVZ sampler into a granular KRVZ sampler, the next
step will be to transform this granular KRVZ sampler directly into an ROBP sampler. We will prove the
following, which is the second stage of the transformation needed to prove the second bullet of Theorem 9.6.

Lemma 9.4 (Granular KRVZ sampler =⇒ ROBP sampler). For any distribution X ∼ {0, 1}n, if there
exists a (2−t)-granular KRVZ sampler of width w that samples X, then there exists an ROBP of width 7w
and input length ℓ = 4nwt that samples X.

Indeed, Lemma 9.4 is the result mentioned earlier, which strengthens the second bullet of Theorem 9.6
when the KRVZ sampler is granular. Given Lemmas 9.2 to 9.4, we can easily prove Theorem 9.6 as follows.

Proof of Theorem 9.6. The first bullet is clearly true by Lemma 9.2. For the second bullet, let X ∼ {0, 1}n
be any distribution that can be generated by a KRVZ sampler of width w, and pick any ε > 0. Now, set
α = 2−t and t = ⌈log(nw/ε)⌉. By Lemma 9.3, there is a 2−t-granular KRVZ sampler X∗ ∼ {0, 1}n of
width w that is (2−tnw ≤ ε)-close to X. By Lemma 9.4, there is an ROBP of width 7w and input length
ℓ = 4nwt = 4nw⌈log(nw/ε)⌉ ≤ 8nw log(nw/ε) that exactly samples X∗. The result follows.

199

Thus, if we can show Lemmas 9.2 and 9.4, we are done. We start with the proof of Lemma 9.2, which is
much easier, but also less interesting. After that, we prove Lemma 9.4, completing the proof of Theorem 9.6.

ROBP sampler =⇒ KRVZ sampler Let’s show that KRVZ samplers can simulate ROBP samplers.

Proof of Lemma 9.2. As a reminder, we must show that if there is an ROBP B of width w and length ℓ that
samples X ∼ {0, 1}n, then there is a KRVZ sampler B′ of width 2w that samples X.

Step 1 The first step is transforming B into an ROBP where each edge is labeled by 0 or 1 output bits.
Towards this end, let G = (V,E) be the underlying graph of B, with layer V = V0 ∪ V1 ∪ · · · ∪ Vℓ. Fix any
i ∈ [n], and consider the edges between layers Vi−1 and Vi. They are each labeled by γi output bits. If γi is
already 0 or 1, we do not change anything about layers Vi−1 and Vi. So henceforth assume γi > 1.

The idea is to simply add γi+1 new layers L0
i , L

1
i , . . . , L

γi
i in between Vi−1 and Vi. For each vertex

v ∈ Vi−1, we do the following: suppose that v originally had an edge to u ∈ Vi with input label 0 and
output label s ∈ {0, 1}γi . Now, delete that edge and simulate it as follows: add a new vertex vj to each new
layer Lji . Draw an edge from v to v0, and give it input label 0 and no output label. Then, draw two new
edges from v0 to v1, with input labels 0, 1, and output label s1. Then, draw two new edges from v1 to v2,
with input labels 0, 1, and output label s2. Continue this process until we have drawn edges up to vertex vγi .
Finally, draw two new edges from vγi to u with input labels 0, 1 and an empty output label.

Now suppose that v originally had an edge to w ∈ Vi with input label 1 and output label t ∈ {0, 1}γi .
Do the exact same process as before, except give the first new edge that is drawn the input label 1 (instead of
0). Finally, recall that we needed to do this for every v ∈ Vi−1. After this is done, repeat the process for any
Vi−1, Vi with γi > 1. Now, it is straightforward to verify that for any v ∈ Vi−1, u ∈ Vi, if we plug random
bits into our new branching program and arrive at v, then the probability of then transitioning from v to u
and outputting any given string s of bits will be the same as it was before. Thus the new ROBP samples the
same distribution X as before, has width 2w, and every edge is labeled with at most 1 output bit.

Step 2 The second step is to transform this new ROBP into a KRVZ sampler for X. Let B now denote the
new ROBP we have sampling X, which has each edge labeled with at most 1 output bit. Let its underlying
graph G = (V,E) have layers V = V0 ∪ V1 ∪ · · · ∪ Vℓ, where we are now guaranteed ℓ ≥ n. Define a
collection of indices 0 = a0 < a1 < · · · < an as follows: let aj be the smallest integer greater than aj−1
such that Vaj has incoming edges labeled with 1 output bit. To translate our ROBP sampler into a KRVZ
sampler for X, we will do a transformation for each pair of layers Vaj−1 , Vaj .

Fix some v ∈ Vaj−1 , u ∈ Vaj . Notice that all paths between v, u are labeled with exactly 1 output bit.
For every b ∈ {0, 1}, compute the following probability, pv,u,b: plug random bits into the ROBP, condition
on reaching v, then let pv,u,b be the probability of traversing from v to u and outputting b. Given this
probability, draw a KRVZ sampler edge from v to u, and give it label b and probability pv,u,b. Now do the
same for every v ∈ Vaj−1 , u ∈ Vaj . Then, repeat this process for all j ∈ [n].

At the end of the above process, delete all edges that are not KRVZ sampler edges, and delete all
vertices that are not in Va1 , Va2 , . . . , Van . Thus we obtain a KRVZ sampler of width 2w. Furthermore, for
any v ∈ Vaj−1 , u ∈ Vaj , it is straightforward to verify that the probability of transitioning from v to u and
outputting any single bit b (conditioned on reaching v in the first place) is the same in the original ROBP
and the new KRVZ sampler. Thus we have a KRVZ sampler B′ of width 2w that samples X.

200

Granular KRVZ sampler =⇒ ROBP sampler We’ve arrived at the much harder direction of our equiv-
alence: Lemma 9.4. We warm up with an easier lemma, which is independently useful, and whose proof
contains all the intuition needed to ultimately prove Lemma 9.4 (and thus finish the proof of Theorem 9.6).

Lemma 9.5 (Granular KRVZ sampler =⇒ ROBP sampler, but larger width, less randomness). For any
distribution X ∼ {0, 1}n, if there exists a (2−t)-granular KRVZ sampler of width w that samples X, then
there exists an ROBP of width 4w2 and input length ℓ = nt that samples X.

This lemma is similar to Lemma 9.4, except that the ROBP has larger width but uses less randomness.
Since the main parameter we care about when sampling using ROBPs is width, Lemma 9.4 is usually more
useful. Still, in some applications, squaring the width is a trivial loss in parameters, and it is preferable to
use as little randomness as possible, favoring Lemma 9.5. For this reason, we also record a general version
of Lemma 9.5, which can be obtained by combining it with Lemma 9.3 (set α := 2−t, t := ⌈log(nw/ε)⌉).

Corollary 9.2 (KRVZ sampler =⇒ ROBP sampler, but larger width, less randomness). For any distribu-
tion X ∼ {0, 1}n, if there exists a KRVZ sampler of width w that samples X, then for any ε > 0, there exists
an ROBP of width 4w2 and input length ℓ = 2n log(nw/ε) that samples a distribution that is ε-close to X.

Note this is an alternative version of the second bullet in Theorem 9.6, using more width but less randomness.
The plan now is to prove Lemma 9.5, and then show how we can extend the intuitions developed in this

proof to prove Lemma 9.4. In order to prove Lemma 9.5, we will transform a granular KRVZ sampler into
an ROBP sampler in a vertex-by-vertex fashion. In particular, we will replace each vertex v in the KRVZ
sampler with a small ROBP sampler gadget. The goal of the gadget will roughly be to simulate the edge
probabilities coming out of v. The exact gadget that we will use will look something like an (efficient)
ROBP that computes a “multi-threshold” function.

To formally define this multi-threshold function, we need a few definitions. First, given distinct strings
x, y ∈ {0, 1}n, recall the definition of the lexicographic order. In this order, x < y if xi < yi at the smallest
index i ∈ [n] where xi ̸= yi. Given this ordering, we define (open and closed) intervals in the natural way.
For example, for x, y ∈ {0, 1}n, we let (x, y] := {s ∈ {0, 1}n : x < s ≤ y}. It will also be convenient to
let 0⃗ ∈ {0, 1}n denote the all zeroes bitstring, 1⃗ ∈ {0, 1}n denote the all ones bitstring, and −⃗1 denote an
imaginary bitstring that is strictly less than all x ∈ {0, 1}n. This lets us write (−⃗1, x] = [⃗0, x] for any x.

We are now ready to define the multi-threshold function. For any bitstring “thresholds” −⃗1 = τ0 <
τ1 < · · · < τt = 1⃗, we define the t-threshold function f : {0, 1}n → [t] over these thresholds to out-
put the label of the “bucket” into which the input falls. Formally, f(x) is defined as the unique i ∈ [t]
such that x ∈ (τi−1, τi]. Given this definition, we are ready to state the key ingredient that goes into prov-
ing Lemma 9.5, Lemma 9.4, and Theorem 9.6. In particular, we construct a (near-optimal) Σ-ROBP for
computing t-threshold functions (recall Definition 9.2 for the definition of Σ-ROBPs).

Lemma 9.6 (Key ingredient for Theorem 9.6). For any t-threshold function f : {0, 1}n → [t], there exists
a Σ-ROBP of width 2t that computes f . Furthermore, this is almost tight: There exist many t-threshold
functions that cannot be computed in width < 2t− 1.

The tightness of this result will imply that some constant blow-up in width is necessary when simulating
KRVZ samplers with ROBP samplers via this gadget. It is natural to ask whether this gadget can be replaced
by a different gadget (computing a different function) that only requires width t. We answer this question
in the positive in Section 9.6, where the different gadget is used to keep our direct product theorem strong.
While the different gadget will have very low width, it will only be able to help us approximately sample
distributions. It will therefore be useful for the direct product theorem, but less useful for the exact sampling

201

required by Lemmas 9.4 and 9.5. We will prove Lemma 9.6 at the very end of this section. But first, we
show how it can be used to prove Lemmas 9.4 and 9.5.

Proof of Lemma 9.5. We must show that if there is a 2−t-granular KRVZ sampler B of width w that samples
X ∼ {0, 1}n, then there exists an ROBP of width 4w2 and input length ℓ = nt that samples X.

Step 1 The first step is just developing a single gadget. Let A be a 2−t-granular KRVZ sampler of width
w for just one bit Y ∼ {0, 1}. Let its underlying graph be G = (V,E) with layers V = V0 ∪ V1. Label the
vertices in the last layer V1 = {v1, . . . , vw}. For each i ∈ [w] and b ∈ {0, 1}, let pi,b denote the probability
that the KRVZ sampler transitions from its start state to vi and outputs b. Assume without loss of generality
that each pi,b > 0 (it is straightforward, but notationally inconvenient, to handle when this is not the case).
We would like to construct an ROBP sampler A′ of width 4w (and length t) that exactly simulates this.

Since A is 2−t-granular, we know that each pi,b = Pi,b · 2−t for some nonnegative integer Pi,b. Fur-
thermore, since we must have

∑
i,b pi,b = 1 it must hold that

∑
i,b Pi,b = 2t. Recalling our discussion of

thresholding functions before Lemma 9.6, it is straightforward to define thresholds in {0, 1}t

−⃗1 = τ∅ < τ1,0 < τ2,0 < · · · < τw,0 < τ1,1 < τ2,1 < · · · < τw,1 = 1⃗

so that for any threshold τi,b, if we consider the threshold τ ′ immediately preceding it, then the set (τ ′, τi,b] ⊆
{0, 1}t has exactly Pi,b elements.

Now, let f : {0, 1}t → [2w] be the multi-threshold function over the above thresholds. Identify [2w]
with the set [w] × {0, 1}. By definition of our thresholds, note that for any i ∈ [w], b ∈ {0, 1}, if we
uniformly draw x ∼ {0, 1}t, then the output f(x) = (i, b) with probability Pi,b · 2−t = pi,b. By Lemma 9.6,
there is an ROBP C of width 4w (and length t) that exactly computes this function. We label the nodes in
the last layer of this ROBP with the set {ui,b}i∈[w],b∈{0,1}. We can assume without loss of generality that,
upon feeding random bits into this ROBP, the computation path reaches ui,b with probability pi,b.

Finally, we can construct A′ from C, as follows. Add a final layer consisting of w nodes, which we will
call {qi}i∈[w]. Now, for every i ∈ [w], b ∈ {0, 1}, draw two edges from ui,b to qi, with input labels 0, 1
respectively, but both with the same output label b. This completes the construction of our ROBP gadget
A′. It is straightforward to verify that for any i ∈ [w], b ∈ {0, 1}, it holds that if we feed random bits into
A′, then we arrive at qi and output b with probability pi,b. Notice that A′ has length t+ 1. In fact, since the
transitions into the last layer are trivial, it is easy to redirect edges from the third-to-last layer to bypass the
second-to-last layer and give A′ length t.

Step 2 The second step is to use the above gadget to transform our 2−t-granular KRVZ sampler B into an
ROBP B′. LetG = (V,E) be the underlying graph of the KRVZ sampler, with layers V = V0∪V1∪· · ·∪Vn.
For each i ∈ [n] and v ∈ Vi−1, replace its outgoing edges with a new gadget described above. For any u ∈ Vi
and b ∈ {0, 1}, note that the probability of traversing from v to u and outputting b remains the same, by the
gadget construction. Thus we have constructed an ROBP B that exactly samples the same distribution, as
desired. Since we construct a fresh gadget (which has width 4w) for each vertex in each layer, B′ will have
width w · 4w = 4w2. And since each gadget has length t, and we are concatenating n gadgets in a series
configuration, B will have length ℓ = nt.

Using the ideas in the above proof, we finally turn towards proving Lemma 9.4.

Proof of Lemma 9.4. We must show that if there is a 2−t-granular KRVZ sampler B of width w that samples
X ∼ {0, 1}n, then there is an ROBP of width 7w and input length ℓ = 4nwt that samples X. By the proof of

202

Lemma 9.5, we know for any 2−t-granular KRVZ samplerA of width w that samples just 1 bit Y ∼ {0, 1},
there is an ROBP sampler A′ of width 4w and length t that exactly samples Y. We call A′ a gadget.

The next step is to use the above gadget to transform the granular KRVZ sampler B that samples X ∼
{0, 1}n into an ROBP B′ that generates the same distribution. Let G = (V,E) be the underlying graph of
the KRVZ sampler, with layers V = V0 ∪ V1 ∪ · · · ∪ Vn. In the proof to Lemma 9.5, we transformed B into
B′ by looking at each boundary Vi−1, Vi, and replacing each vertex v ∈ Vi−1 and its outgoing edges (and
neighbors) with a gadget A′. However, the gadgets corresponding to each v ∈ Vi−1 were stacked on top of
each other in a parallel configuration, meaning that the width of B was forced to grow by a factor of w. To
prevent this from happening, our goal will be to arrange the gadgets corresponding to each v ∈ Vi−1 in a
series configuration.

In more detail, we will transform B into B′ via a layer-by-layer process as follows. For each i ∈ [n],
consider the boundary between layers Vi−1 and Vi. We will replace the edges that cross this boundary with
a large ROBP Z∗ that consists of three medium-sized ROBPs S,W, T stacked atop one another. We call
S the “source” or “pre-processing” ROBP, we call W the “working” or “processing” ROBP, and we call
T the “sink” or “post-processing” ROBP. Intuitively, the source ROBP will take inputs coming from each
v ∈ Vi−1 and keep them in a “holding pattern.” Then, the source ROBP will send these inputs into the
working ROBP, which is used to simulate the appropriate probabilities coming out of the edges of each
v ∈ Vi−1 in the KRVZ sampler. In particular,W will consist of several gadgets of the form A′ arranged in
a series configuration. Finally, the working ROBP will send its inputs to the sink ROBP, which will keep its
inputs in a holding pattern before finally passing them off to the proper vertices in Vi.

We now formalize the above intuition. The plan is to start by formally describing each of the medium-
sized ROBPs S,W, T .13 Then, we will describe how to interface these ROBPs together to create the large
ROBP Z∗. Then, we will describe how to interface Z∗ with the layers Vi−1, Vi (i.e., replace the edges cross-
ing between Vi−1, Vi with Z∗) and argue that this transformation preserves the desired edge probabilities.
For convenience, we will label the vertices in Vi−1 as u1, . . . , uw and the vertices in Vi as v1, . . . , vw.

Construction of the source ROBP S The directed acyclic graph GS = (S,ES) underlying this ROBP
will consist of 1 + tw layers S = S0 ∪ S1 ∪ · · · ∪ Stw, each holding w vertices. Label the vertices in Si
as s(i)1 , . . . , s

(i)
w . Then, for every i ∈ [tw] and j ∈ [w], draw two edges from s

(i−1)
j to s(i)j , one of which is

given the input label 0 and the other is given the input label 1. This completes the construction of S. Notice
that S should appear as w parallel lines (of length 1 + tw) drawn atop one another.

Construction of the sink ROBP T The directed acyclic graph GT = (T,ET) underlying this ROBP will
consist of 1 + tw layers T = T1 ∪ T2 ∪ · · · ∪ Ttw+1, each holding 2w vertices. Label the vertices in Ti as
{t(i)j,b}j∈[w],b∈{0,1}. Then, for every i ∈ [tw], j ∈ [w], b ∈ {0, 1}, draw two edges from t

(i)
j,b to t(i+1)

j,b , one of
which is given the input label 0 and the other is given the input label 1. This completes the construction of
T . Notice that T should appear as 2w parallel lines (of length 1 + tw) drawn atop one another.

Construction of the working ROBP W The directed acyclic graph GW = (W,EW) underlying this
ROBP will consist of tw layers W = W1 ∪ W2 ∪ · · · ∪ Wtw, each holding 4w vertices. We break the
construction ofW into the construction of w smaller ROBPs A1, . . . ,Aw. Each Ai will have width 4w and
length t, and they will be arranged in a series configuration (i.e., consecutively) in order to createW .

Each Ai will be constructed as follows. First, let us return to thinking about the KRVZ sampler, and for
every j ∈ [w], b ∈ {0, 1}, let pi,j,b be the probability assigned to the edge (ui, vj) with label b by the KRVZ

13These “ROBPs” will actually just be layered DAGs with edge labels, and won’t perfectly match the formal definition of ROBP.

203

sampler. Using the proof of Lemma 9.5, we construct an ROBP Ai that has width 4w and length t (with the
last layer having just 2w vertices) such that the following holds: if the vertices in the last layer of Ai are
called {aj,b}j∈[w],b∈{0,1}, then vertex aj,b is hit with probability pi,j,b when a random string x ∈ {0, 1}t is
fed as input into Ai.

This completes the construction ofW . Notice thatW should appear as w gadgets (each of width 4w and
length t) A1, . . . ,Aw arranged in a series configuration. That is, the start vertex of gadget Ai will belong to
layer W(i−1)t+1 and the final layer of Ai will belong to layer Wit.

Combining ROBPs S,W, T into the final ROBP Z∗ The final ROBP Z∗ will be combined by stacking
the ROBPs S,W, T one atop another (i.e., arranging them in a parallel configuration). In more detail, the
directed acyclic graphGZ = (Z,EZ) underlying this ROBP will consist of tw+2 layersZ = Z0∪Z1∪· · ·∪
Ztw+1. We will haveZ0 = S0, Z1 = S1∪W1∪T1, Z2 = S2∪W2∪T2, . . . , Ztw = Stw∪Wtw∪Ttw, Ztw+1 =
Ttw+1. Thus, Z∗ has width w + 4w + 2w = 7w and length tw + 2.

Next, we add and rearrange a few edges. These modifications will focus on connecting the gadgets Ai
in the working ROBPW to the source ROBP S and sink ROBP T . In particular, for each i ∈ [w], consider
the gadget Ai. Define β′ < β′′ ∈ [tw] such that Zβ′ holds the start vertex of Ai and Zβ′′ holds the last
layer of Ai. Then, consider the ith vertex in layer Sβ′−1 of the source ROBP S . Recall it is called s(β

′−1)
i .

Furthermore, recall that it had two edges going into the next layer of the source ROBP S . Delete these
edges, and replace them with two edges from s

(β′−1)
i into the start vertex of Ai, and give them input labels

0 and 1, respectively. This completes the connection of the source ROBP S to the working ROBPW .
Next, recall that the vertices in the final layer of Ai are labeled {aj,b}j∈[w],b∈{0,1}, and are located in

layer Zβ′′ . Currently, they have no edges leaving them. Now, for each j ∈ [w], b ∈ {0, 1}, draw two
edges from aj,b to t(β

′′+1)
j,b ∈ Zβ′′+1, and give them input labels 0 and 1, respectively. This completes the

connection of the working ROBPW to the sink ROBP T .
We have therefore completed the connection of source ROBP S to working ROBPW , and the connection

from working ROBPW to sink ROBP T . Thus we have fully completed the construction of ROBP Z∗. The
most important property of Z∗ is as follows: for any i ∈ [w], if we start at vertex s(0)i and feed a random
string x ∈ {0, 1}tw+1 as input into the ROBP Z∗, then for any j ∈ [w], b ∈ {0, 1}, we arrive at vertex
t
(tw+1)
j,b with probability pi,j,b. This is straightforward to verify via the above construction and the guaranteed

properties of each gadget Ai.
All that remains now is to interface the ROBP Z∗ with the layers Vi−1, Vi.

Inserting ROBP Z∗ between layers Vi−1, Vi This is the final and easiest step of our construction. Recall
that the vertices in Vi−1 are labeled as u1, . . . , uw and the vertices in Vi are labeled as v1, . . . , vw. For each
i ∈ [w], we do the following: first, delete the edges leaving ui in the KRVZ sampler. Then, draw two edges
from ui to s(0)i , and give them input labels 0 and 1, respectively. Then, for each j ∈ [w], b ∈ {0, 1}, draw
two edges from t

(tw+1)
j,b to vj , and give them input labels 0 and 1, respectively, and give them both output

label b. This completes the interfacing of ROBP Z∗ with layers Vi−1, Vi.
It is now straightforward to verify that for any u ∈ Vi−1 and v ∈ Vi and b ∈ {0, 1}, the probability of

transitioning from u to v and outputting b is the same in the original KRVZ sampler as it is in the new ROBP
sampler. Thus if we replace the boundary between every pair of layers Vi−1, Vi with an appropriate ROBP
Z∗ as constructed above, we obtain an ROBP B′ that samples the exact same distribution as the original
KRVZ sampler, as desired. Furthermore, each Z∗ used in this construction has width 7w and length tw+2.
Since the overall ROBP B′ will contain a Z∗ between each consecutive layers Vi−1, Vi for i ∈ [n], the

204

overall ROBP B′ will have length ℓ = n · (tw + 2) + n ≤ 4ntw and width 7w, as desired.

At last, all that remains is to prove our result on computing multi-threshold functions in low width.

Proof of Lemma 9.6. Let f : {0, 1}n → [t] be a t-threshold function over the thresholds

−⃗1 = τ0 < τ1 < · · · < τ t = 1⃗,

where each τα ∈ {0, 1}t (in particular, the superscripts are labels, not powers). We wish to show that there
is an ROBP B of width 2t that computes f . To specify B, we must specify its underlying graph G = (V,E),
which will have t layers V = V0 ∪ V1 ∪ · · · ∪ Vt. We first specify the construction, and then explain why it
works.

For each layer i ∈ [t], we label the nodes Vi = {v1i , v2i , . . . , vti , ṽ1i , ṽ2i , . . . , ṽti}. The nodes of the form
ṽαi can be thought of as “short-circuit” nodes. In particular, for every short circuit node ṽαi , the both edges
leaving it (with input labels 0, 1 respectively) will simply connect to ṽαi+1. The edges leaving the nodes of
the form vαi will be a little more complex. For each b ∈ {0, 1}, we draw an edge leaving vαi into the next
layer, and give the edge the input label b, based on the following logic:

• If b < ταi+1, connect the edge to ṽαi+1.

• If b = ταi+1, connect the edge to vαi+1.

• If b > ταi+1, let β > α be the smallest integer such that (τα1 , . . . , τ
α
i , b) ≤ (τβ1 , . . . , τ

β
i , τ

β
i+1), and:

– If the above (rightmost) inequality is strict, connect the edge to ṽβi+1.

– Otherwise, connect the edge to vβi+1.

Now, we just need to specify the edges leaving vstart ∈ V0. For each b ∈ {0, 1}, we draw an edge from vstart
into V1 with the label b using the same logic as the third bullet above. In particular, let β be the smallest
integer such that b ≤ τβ1 , and: if this inequality is strict, connect the edge to ṽ(β)1 ; otherwise, connect the
edge to vβ1 . Finally, we give each vαn and ṽαn the output label α.

To see why this ROBP computes the threshold function f , consider its computation path as it reads the
input x = (x1, . . . , xt) ∈ {0, 1}t. Note that as it reads each input bit xi, it follows the branching instructions
described by our itemized list (think of xi as b). We make a few observations:

1. Suppose that the branching program reaches node vαi after reading x1, . . . , xi. Then it must hold that
(x1, . . . , xi) = (τα1 , . . . , τ

α
i) and x > τα−1. This follows easily by induction on i.

2. Suppose the branching program reaches short circuit node ṽαi after reading x1, . . . , xi. Then it must
hold that τα−1 < x < τα. This is straightforward to show using the above observation.

Thus by combining the above observations, if a string x leads to vαn or ṽαn , it must hold that τα−1 < x ≤ τα.
Now, consider any x = (x1, . . . , xn) that the ROBP will read. By the definition of our thresholds, there

must be some α such that τα−1 < x ≤ τα. Of course, x must lead to some final state in the branching
program. In order to not contradict the above, this state must be either vαn or ṽαn , both of which have the
output label α. So the ROBP will output α, and therefore compute the multi-threshold function f , as
desired. This completes the proof that any t-threshold function f can be computed by a Σ-ROBP of width 2t.

205

We now show that many t-threshold functions f : {0, 1}n → [t] cannot be computed in width
< 2t− 1. In particular, pick any thresholds

−⃗1 = τ0 < τ1 < τ2 < · · · < τt = 1⃗

in {0, 1}n such that both of the following hold:

• For every i ∈ [t− 1] the last bit of τi is 0.

• For every i ∈ [t] the interval (τi−1, τi] contains at least 3 strings.

We will show that for any such thresholds τ0, τ1, . . . , τt, the corresponding t-threshold function
f : {0, 1}n → [t] cannot be computed in width < 2t− 1.

To see why, consider any Σ-ROBP B of width < 2t − 1. Let g : {0, 1}n → [t] denote the function it
computes. We will show that g ̸= f . First, notice that the lower bound on the size of each (τi−1, τi] implies
that for every i ∈ [t] there exists some τi−1 < αi < τi such that the last bit of αi is 0. Next, note that since
B has width < 2t− 1, there must exist two distinct strings x < y in the sequence

α1 < τ1 < α2 < τ2 < · · · < τt−1 < αt

that lead to the same state in the second-to-last layer of B. Now, define x0 to be x with its last bit replaced
by 0, and x1 to be x with its last bit replaced by 1. Similarly, define y0 to be y with its last bit replaced by
0, and y1 to be y with its last bit replaced by 1. Since the ROBP is agnostic to which of x, y it read once it
reaches the second to last layer, we know g(x0) = g(y0) and g(x1) = g(y1).

Suppose now that there is no i ∈ [t] such that x0, y0 both belong to the interval (τi−1, τi]. Then by
definition of thresholding functions, we clearly have f(x0) ̸= f(y0), and thus g ̸= f . Thus assume that
there is some i ∈ [t] such that x0, y0 both belong to (τi−1, τi]. Note that this is only possible if x = αi and
y = τi for some i ∈ [t− 1]. But then τi−1 < x1 ≤ τi and y1 > τi, meaning that there is no j ∈ [t] such that
x1, y1 both belong to the interval (τj−1, τj]. In other words, f(x1) ̸= f(y1), and thus g ̸= f , as desired.

This fully completes the proof of our first main equivalence theorem (Theorem 9.6), which establishes
that ROBP samplers and KRVZ samplers are equivalent, up to a very small loss in parameters.

Equivalence theorems between simple samplers and ROBP computers for input-output pairs

We now turn to a completely different kind of equivalence theorem. Namely, we will show that a simple
sampler can generate the distribution (Un, b(Un)) if and only if an ROBP can compute the function b. More
formally, we prove the following theorem.

Theorem 9.7 (Equivalence theorem between simple samplers and ROBPs for input-output pairs). For any
function b : {0, 1}n → {0, 1}, there exists a simple sampler of width w that samples (Un, b(Un)) if and
only if there exists an ROBP of width w that computes b.

Notice that one direction of this theorem offers a way to translate sampling lower bounds against simple
(and thus KRVZ and ROBP) samplers into hard functions for ROBPs.

Proof of Theorem 9.7. We start by proving that a simple sampler implies an ROBP. Let B be the simple
sampler of width w that can sample (Un, b(Un), with underlying graph G = (V,E) and layers V =
V0 ∪ V1 ∪ · · · ∪ Vn+1. We now define an ROBP B′ that computes b as follows. Define its underlying graph
G′ = (V ′, E′) to have layers V ′0 ∪V ′1 ∪· · ·∪V ′n, where each V ′i is an exact copy of Vi. Furthermore, for each

206

e ∈ E that goes between layers Vi−1, Vi for some i ∈ [n], and which is not assigned probability 0, copy this
edge (with its label) into E′. Finally, for all v′ ∈ V ′n whose corresponding vertex in v ∈ Vn has an outgoing
edge labeled 1, label the vertex v′ as an accepting state.14

Now, notice that for every x ∈ {0, 1}n with b(x) = 1, the simple sampler B must output (x, 1) with
nonzero probability, and so x must lead to an accepting state in B′. And for every x ∈ {0, 1}n with
b(x) = 0, it must hold that x does not lead to an accepting state in B′, because otherwise this would imply
that B samples (x, 1) = (x,¬b(x)) with nonzero probability (meaning that it does not sample (Un, b(Un))
exactly). Thus B′ computes b, and has width w.

We now prove the reverse direction. Let B be an ROBP of width w that computes b, with underlying
graph G = (V,E) and layers V = V0 ∪ V1 ∪ · · · ∪ Vn. We define a simple sampler B′ that samples
(Un, b(Un)) as follows. Define its underlying graphG′ = (V ′, E′) to have layers V ′0∪V ′1∪· · ·∪V ′n∪V ′n+1,
where each V ′i , for i ∈ [n], is an exact copy of Vi. Furthermore, copy the entire edge set of E into E′

(including its labels).
Let V ′n+1 consist of a single vertex, which we call v∗. For each v′ ∈ V ′n, check if the corresponding

vertex v ∈ Vn is labeled vaccept: if so, draw an edge from v′ ∈ V ′n to v∗ ∈ V ′n+1 and label it 1; otherwise,
draw the same edge but label it 0. Finally, for each vertex v′ ∈ V ′, let pv′ be the uniform probability
distribution over its outgoing edges.

It is straightforward to verify that for any fixed x ∈ {0, 1}n, the first n bits produced by the simple
sampler B′ are exactly x with probability 2−n, and if this is true then the final bit produced by B′ is b(x)
with probability 1. Thus B′ exactly samples (Un, b(Un) and has width w.

Theorem 9.7 provides a way to convert worst-case lower bounds against sampling (Un, b(Un)) into
worst-case lower bounds against computing b. We now strengthen this direction and provide a way to
convert average-case sampling lower bounds into average-case computing lower bounds. For this, we need
the definition of the correlation between two functions.

Definition 9.8 (Correlation). The correlation between two functions f, g : {0, 1}n → {0, 1} is defined as

corr(f, g) := Ex[(−1)f(x)(−1)g(x)] = Pr
x
[f(x) = g(x)]− Pr

x
[f(x) ̸= g(x)].

With this definition in hand, we now prove the following average-case extension of Theorem 9.7.

Theorem 9.8 (Theorem 9.7, extension to correlation bounds). Fix any function b : {0, 1}n → {0, 1}, and
suppose that for any simple sampler X ∼ {0, 1}n+1 of width w, it holds that |X − (Un, b(Un))| > 1−ε

2 .
Then for any ROBP f : {0, 1}n → {0, 1} of width w, it holds that | corr(f, b)| < ε.

Proof. We show the contrapositive: that if there exists an ROBP B of width w computing a function f :
{0, 1}n → {0, 1} with | corr(f, b)| ≥ ε, then there is a simple sampler B′ of width w sampling a distribution
X ∼ {0, 1}n such that |X − (Un, b(Un))| ≤ 1−ε

2 . We start by assuming, without loss of generality, that
corr(f, b) ≥ ε. To see why, simply note that corr(f, b) = − corr(1 − f, b) and that if f is computable
by a width w ROBP then so is 1 − f (by swapping the accept and reject states). Thus if we started with
corr(f, b) ≤ −ε, we could instead consider the ROBP computing f ′ := 1− f which has corr(f ′, b) ≥ ε.

So we now assume B is a width w ROBP computing a function f with corr(f, b) ≥ ε. By definition of
correlation, corr(f, b) = Pr[f = b]−Pr[f ̸= b] = 2Pr[f = b]−1 ≥ ε, which implies that Prx∼Un [f(x) =
b(x)] ≥ 1+ε

2 . We will use this in a moment.

14Technically, the definition of ROBP requires a single vertex in Vn to be labeled vaccept, but we can easily adjust for this by
selecting one of the accepting states to be designated vaccept, and redirecting all edges that go into an accepting state to go into
vaccept, instead.

207

Now, let B′ be a simple sampler that is constructed from the ROBP B in the exact same way as in
the proof to Theorem 9.7. It is easy to verify that the first n bits produced by B′ are equal to any given
x ∈ {0, 1}n with probability 2−n, and if this is true then the final bit produced by B′ is f(x) with probability
1. Thus if X ∼ {0, 1}n+1 is the distribution produced by B′, we have that |X− (Un, b(Un))|

=
1

2

∑
x∈{0,1}n,y∈{0,1}

|Pr[X = (x, y)]− Pr[(Un, b(Un)) = (x, y)]|

=
1

2

∑
x

(|Pr[X = (x, b(x))]− Pr[(Un, b(Un)) = (x, b(x))]|+

|Pr[X = (x,¬b(x))]− Pr[(Un, b(Un)) = (x,¬b(x))]|)

=
1

2

 ∑
x:f(x)=b(x)

(|2−n − 2−n|+ |0− 0|) +
∑

x:f(x) ̸=b(x)

(|0− 2−n|+ |2−n − 0|)

=

1

2

∑
x:f(x)̸=b(x)

2 · 2−n

= Pr[f(x) ̸= b(x)] = 1− Pr[f(x) = b(x)]

≤ 1− 1 + ε

2
=

1− ε
2

.

Thus B′ achieves the claimed sampling bound, and has width w.

This completes the discussion of our second flavor of equivalence theorem, which shows that sampling
the distribution (Un, b(Un)) with a simple sampler is equivalent to computing the function b with an ROBP.

Equivalence theorems between simple samplers and ROBP computers for flat distributions

For our third and final flavor of equivalence theorem, we consider distributions Q ∼ {0, 1}n uniform over
some subset S ⊆ {0, 1}n. We let 1S : {0, 1}n → {0, 1} denote the indicator for S, and prove the following.

Theorem 9.9 (Equivalence theorem between simple samplers and ROBPs for flat distributions). For any
distribution Q ∼ {0, 1}n that is uniform over some subset S ⊆ {0, 1}n:

• If there exists a simple sampler of width w that samples Q, then there exists an ROBP of width w + 1
that computes 1S : {0, 1}n → {0, 1}.

• If there exists an ROBP of width w that computes 1S : {0, 1}n → {0, 1}, then there exists a simple
sampler of width w that samples Q.

The second bullet of the above theorem is quite useful: for example, it gives an easy way to sample from
affine spaces (by computing parity checks in low-width), and furthermore it offers a way to translate lower
bounds against simple samplers (and thus KRVZ and ROBP) samplers into hard functions for ROBPs.

Proof of Theorem 9.9. We start by proving that a simple sampler implies an ROBP. Let B be the simple
sampler of widthw that can sample Q, with underlying graphG = (V,E) and layers V = V0∪V1∪· · ·∪Vn.
We now define an ROBP B′ that computes 1S as follows. Define its underlying graph G′ = (V ′, E′) to have
layers V ′0 ∪V ′1 ∪ · · · ∪V ′n, where each V ′i is an exact copy of Vi. Furthermore, copy each edge e ∈ E, which
is not assigned probability 0, into E′ (with its label).

208

Now, for each i ∈ [n], we add an additional vertex to V ′i , which we call ṽi. And for every i ∈ [n − 1],
draw two edges from ṽi to ṽi+1: one labeled with 0 and the other labeled 1. Intuitively, this new row of
vertices might be considered as the “reject gutter.” Next, for each i ∈ [n] and v′ ∈ V ′i−1, if v′ has no outgoing
edge labeled 0, draw an edge from v′ to ṽi and label it 0. And if v′ has no outgoing edge labeled 1, draw an
edge from v′ to ṽi and label it 1. Finally, for all v′ ∈ V ′n except ṽn, label v′ as an accepting state.

Now, notice that for every x ∈ {0, 1}n such that 1S(x) = 1, it holds by definition that x ∈ support(Q),
which means that the simple sampler B of course outputs x with nonzero probability. Thus, x must lead
to an accepting state in B′. And for every x ∈ {0, 1}n such that 1S(x) = 0, it holds by definition that
x /∈ support(Q), which means that the simple sampler B of course outputs x with zero probability. This
means that the unique path in B labeled with xmust have some edge assigned zero probability, which means
that x must enter the “reject gutter” at some point in B′, and ultimately arrive at ṽn, the only reject state in
Vn. Thus B′ computes 1S , and has width w + 1.

We now prove the reverse direction. Let B be an ROBP of width w that computes 1S , with underlying
graph G = (V,E) and layers V = V0 ∪ V1 ∪ · · · ∪ Vn. We define a simple sampler B′ that samples Q as
follows. First, set its underlying graph to be identical to G = (V,E).

Now, for each v′ ∈ V ′, let P (v′) count the number of paths from v′ to an accept state. In particular,
P (v′) = 0 for vertices in the last layer that are not accept states. Then, we assign edge transition probabilities
as follows. For any u′ ∈ V ′ with P (u′) = 0, assign any arbitrary distribution over its outgoing edges (it
won’t matter). For all other edges (u′, v′), assign it probability P (v′)/P (u′). Note that this is indeed a
valid probability distribution: suppose u′ has outgoing edges to v′ and w′: then it will always be true that
P (u′) = P (v′)+P (w′), and thus the probabilities we assigned over its outgoing edges, namely P (v′)/P (u′)
and P (w′)/P (u′), must add up to 1.

Suppose now that x is not accepted by B. Then the last vertex v′ on its computation path in B will not
be an accept state. Thus P (v′) = 0, which means that the probability on the last edge before hitting v′ is 0,
and thus the overall probability assigned to this path in B′ is 0.

Suppose now that x is accepted by B, and that its computation path uses edges e1 = (v0, v1), e2 =
(v1, v2), . . . , en = (v1, vn). Then of course P (vi) > 0 for each vertex on this path, and the overall proba-
bility of the path is

P (v1)

P (v0)
· P (v2)
P (v1)

· · · P (vn)
P (vn−1)

=
P (vn)

P (v0)
.

But P (vn) is just 1, and v0 must be the start vertex of the program, so P (v0) must be exactly the number
of strings accepted by B. Thus our simple sampler B′ samples each accepting string of B with the same
probability 1/P (v0). In other words, the distribution it outputs is uniform over 1−1S (1) = S, meaning that it
exactly samples Q.

Theorem 9.9 shows how to convert worst-case lower bounds against sampling a flat distribution Q ∼
{0, 1}n into worst-case lower bounds against computing the indicator function 1S of its support. We now
strengthen this direction and show how to convert average-case sampling lower bounds into covariance
bounds. Towards this end, we define the bias of a function f : {0, 1}n → {0, 1} as bias(f) := Ex[(−1)f(x)],
and provide the definition of covariance, below.

Definition 9.9 (Covariance). The covariance between two functions f, g : {0, 1}n → {0, 1} is defined as

cov(f, g) := corr(f, g)− bias(f) bias(g),

Note that we must use the more general notion of covariance (instead of correlation, as in Theorem 9.8)
since it is possible to get strong sampling lower bounds against Q even if 1S is very biased. With this in
mind, let us proceed to prove our average-case version of Theorem 9.9.

209

Theorem 9.10 (Theorem 9.9, extension to covariance bounds). Let Q ∼ {0, 1}n be any distribution that
is uniform over some subset S ⊆ {0, 1}n, and suppose that for any simple sampler X ∼ {0, 1}n of width
w, it holds that |X − Q| > 1 − ε

4 . Then for any ROBP f : {0, 1}n → {0, 1} of width w, it holds that
| cov(f, 1S)| < ε.

Proof. We show the contrapositive: that if there exists an ROBP B of width w computing f : {0, 1}n →
{0, 1} such that | cov(f, 1S)| ≥ ε, then there is a simple sampler B′ of width w sampling a distribution X ∼
{0, 1}n such that |X−Q| ≤ 1− ε/4. We start by assuming, without loss of generality, that cov(f, 1S) ≥ ε.
We can do this because cov(f, 1S) = − cov(1− f, 1S), and because 1− f must also be computable by an
ROBP of width w (by swapping the accept and reject states).

So now we assumeB is a widthw ROBP computing a function f with cov(f, 1S) ≥ ε. LetB′ be a simple
sampler that is constructed from the ROBP B in the exact same way as in the proof to Theorem 9.9. We know
it outputs a distribution X ∼ {0, 1}n that is uniform over f−1(1). We want to show that |X−Q| ≤ 1−ε/4.

It will now be notationally convenient to define the following quantities, taking uniform x ∼ {0, 1}n:

a := Pr[f(x) = 1]

b := Pr[1S(x) = 1]

c := Pr[f(x) = 1 and 1S(x) = 1].

Without loss of generality, we may assume both a, b > 0. Now, by definition of covariance, we have
cov(f, 1S) = corr(f, 1S) − bias(f) bias(1S), and using the definitions of correlation and bias, it is a
straightforward calculation to obtain

cov(f, 1S) = 4c− 4ab.

Now, notice that for any x ∈ support(X), it holds that Pr[X = x] = 2−n/a. Similarly, for any q ∈
support(Q), it holds that Pr[Q = q] = 2−n/b. So using the (half ℓ1 norm) definition of statistical distance,
it is straightforward to compute:

2 · |X−Q| = 1

a
· Pr
x
[f(x) = 1, 1S(x) = 0] +

1

b
· Pr
x
[f(x) = 0, 1S(x) = 1]

+ |1
a
− 1

b
| · Pr[f(x) = 1, 1S(x) = 1]

= (1/a)(a− c) + (1/b)(b− c) + |1/a− 1/b| · c.

Without loss of generality assume 1/a ≥ 1/b, and notice this quantity is 2− 2c/b. Thus we have:

|X−Q| = 1− c/b,
cov(f, 1S) = 4(c− ab).

Notice we have c/b ≥ c ≥ c− ab. Thus c/b ≥ cov(f, 1S)/4, and thus

|X−Q| = 1− c/b ≤ 1− cov(f, 1S)/4 ≤ 1− ε/4,

as desired.

With our equivalence theorems in hand, we are ready to go out and explore sampling with limited memory.

210

9.4 The basics

As it turns out, many natural questions about sampling with ROBPs can be answered using easy-to-prove
results from communication complexity. Using this connection, it is straightforward to prove that sampling
is easer than computing for ROBPs (Theorem 9.1), and to obtain sampling lower bounds against input-
output pairs (Theorem 9.2) and general distributions (Theorem 9.3). In this part of the chapter, we focus on
proving these three basic results, and do so in Section 9.4.1, Section 9.4.2, and Section 9.4.3, respectively.
Afterward, we will have built a strong enough foundation for the space complexity of sampling, and will be
ready to prove the two main contributions of this chapter (Theorems 9.4 and 9.5). But before we proceed
with all of this, let us start by reviewing the connection between ROBPs and communication protocols, and
see why communication lower bounds imply lower bounds against ROBPs.

Two-party communication protocols can simulate ROBP computers It is well known that ROBPs
of width 2s can be simulated by two-party protocols that communicate s bits [RY20]. In fact, one-way
communication protocols suffice. In a one-way two-party communication protocol, Alice and Bob are given
inputs x ∈ {0, 1}a and y ∈ {0, 1}b, respectively, and they try to compute some function f : {0, 1}a ×
{0, 1}b → {0, 1}. Alice is allowed to send a single message to Bob, after which Bob must immediately
determine the value f(x, y), using just his input y and the message from Alice.

Observe that for any ROBP f : {0, 1}n → {0, 1} of width 2s, and any a, b that sum to n, it holds
that a one-way communication protocol (where Alice is given a bits, Bob is given b bits, and s bits are
communicated) can exactly compute f . To see why, simply note that Alice can use her a bits to simulate the
first a steps of the ROBP, send the state at which she arrives to Bob (using s bits), which he can then use to
complete the computation.

Thus, if a function g : {0, 1}n → {0, 1} cannot be computed by one-way protocols that communicate s
bits, then it also cannot be computed by ROBPs of width 2s. More generally, if all one-way protocols over
s bits fail to compute g on 1/2− ε fraction of its inputs, the same must be true for all ROBPs of width 2s.

Two-party communication protocols can simulate ROBP samplers Analogously, it is not difficult to
show that if a distribution Q ∼ {0, 1}n can be sampled by an ROBP of width 2s, then it can also be sampled
by a two-party communication protocol that communicates s+1 bits. In such a protocol [AST+03, GW20],
Alice is given private randomness A, Bob is given private randomness B, and they communicate (back and
forth) s + 1 bits about their private randomness to one another. At the end of the protocol, Alice outputs
some X ∼ {0, 1}n/2, Bob outputs some Y ∼ {0, 1}n/2, and the overall output is defined as (X,Y).15

To see why such communication protocols can sample the same distributions as ROBPs, first recall that
any distribution Q ∼ {0, 1}n sampled by a width 2s ROBP can also be sampled by a KRVZ sampler of
width 2s+1, as per Theorem 9.6. It is then easy to simulate a KRVZ sampler using two-party protocols:
Alice can use her randomness A to simulate the first n/2 steps of the random walk over the KRVZ sampler,
send the state at which she arrives to Bob (using s+ 1) bits, at which point Bob can simulate the remaining
n/2 steps of the random walk using his randomness B. At the end, Alice can output the bits she saw on her
random walk, and Bob can do the same.

Thus, if a distribution Q ∼ {0, 1}n cannot be sampled by two-party protocols that communicate s + 1
bits, then it also cannot be sampled by ROBPs of width 2s. More generally, if any distribution Q′ ∼
{0, 1}n sampled by such a protocol has statistical distance ≥ δ from Q, then the same must be true for any
distribution generated by an ROBP of width 2s.

15For a more formal description of sampling with two-party communication protocols, see Section 9.8.

211

9.4.1 Sampling is easier than computing

Using the above connection, it is not hard to prove that sampling is easier than computing for ROBPs
(Theorem 9.1). As a reminder, this theorem asserts that there is some explicit function b : {0, 1}n →
{0, 1} such that ROBPs of exponential width cannot compute b (even on average), yet they can easily
sample (Un, b(Un)) using just linear width. The latter is straightforward to show, and the former follows
immediately from known communication lower bounds. We thank an anonymous reviewer for a concise
proof of these communication lower bounds, which is included and slightly optimized in the proof below.

Theorem 9.11 (Sampling is easier than computing - Theorem 9.1, restated). There exists an explicit function

b : {0, 1}n → {0, 1} such that for any ε > 0 and ROBP F : {0, 1}n → {0, 1} of width at most 2
nε2

9
−log(1/ε),

Pr
x
[F (x) = b(x)] <

1

2
+ ε,

but there exists an ROBP G : {0, 1}ℓ → {0, 1}n+1 of width 2n and length ℓ ≤ n+ log n+ 2 such that

G(Uℓ) = (Un, b(Un)).

Proof. Let k ∈ N be any power of 2, and define n := k + log k. We take b : {0, 1}n → {0, 1} as the
well-known address (or index) function address : {0, 1}k × [k]→ {0, 1}, defined as

address(x, i) := xi.

Upper bounds for sampling We first prove the second part of the theorem. Towards this end, define
X ∼ {0, 1}k and Y ∼ [k] as independent random variables that are uniform over their respective domain,
and note that (Un, b(Un)) = (X,Y,XY). Now, for any y ∈ [k] and b ∈ {0, 1}, define the random variable
Xy←b ∼ {0, 1}k to have all of its bits independent and uniform, except for the yth bit, which is fixed to
b. Furthermore, define the random variable Yy←b := (Xy←b, y, b). It is straightforward to verify that
(Un, b(Un)) can be written as the following convex combination:

(Un, b(Un)) = (X,Y,XY) =
∑

y∈[k],b∈{0,1}

1

2k
·Yy←b. (9.1)

It is not difficult to show that Yy←b can be sampled by an ROBP of width 1 and length k+log k+1 = n+1.
Let By←b be the ROBP that samples it. Then, to sample the entire convex combination written above, we
can create an ROBP B as follows. First, construct a complete binary tree of depth d satisfying 2d = 2k
(recall that k is a power of 2). For any node in the tree, assign its outgoing edges the input labels 0, 1, and
assign to them no output labels. Identify the 2k leaves of the tree with the set [k] × {0, 1}, and for each
y ∈ [k], b ∈ {0, 1}, attach By←b to the leaf (y, b): more formally, identify leaf (y, b) with the start vertex of
By←b. This completes the construction of B.

It is straightforward to verify that B exactly samples the convex combination from Equation (9.1), and
thus it exactly samples (Un, b(Un)). Furthermore, it has width 2k ≤ 2n = O(n) and length ℓ = d+ (n+
1) = log(2k) + n+ 1 ≤ n+ log n+ 2 = O(n), as desired.

Lower bounds for computing We now prove the first part of the theorem, using a slightly optimized
version of a proof suggested by an anonymous reviewer. This part follows immediately from known lower

212

bounds on computing the address function using one-way communication protocols. We prove these lower
bounds, below.

Suppose there is a one-way communication protocol that computes a function f : {0, 1}k× [k]→ {0, 1}
such that f(x, i) = address(x, i) on at least 1

2 + ε fraction of the possible pairs x, i. In other words,

Pr
x∼{0,1}k
i∼[k]

[f(x, i) = address(x, i)] ≥ 1

2
+ ε.

Furthermore, suppose that in this protocol, Alice is given x ∈ {0, 1}k and Bob is given i ∈ [k]. Let s be the
maximum number of bits that Alice sends to Bob on any input. The goal is to lower bound s.

First, note that Alice’s message to Bob will always be in the setM := {0, 1}∪{0, 1}2∪· · ·∪{0, 1}s, and
thus there are< 2s+1 possible messages she could send to Bob. For each messagem ∈M, let Sm ⊆ {0, 1}k
denote the set of all strings that cause Alice to send m to Bob. Note that {Sm}m∈M partitions Alice’s input
space {0, 1}k.

Now, consider any m ∈M such that

Pr
x∼Sm
i∼[k]

[f(x, i) = address(x, i)] >
1 + ε

2
. (9.2)

We will argue that t := |Sm| must be quite small. To see why, first notice that by definition of one-way
communication protocols, there must be some deterministic function g : [k] → {0, 1} such that f(x, i) =
g(i) for all x ∈ Sm: this is because Bob’s output only depends on the message he receives and his own input
i, and all inputs x ∈ Sm end up in Bob receiving the same message. Thus we have

Pr
x∼Sm
i∼[k]

[g(i) = address(x, i)] >
1 + ε

2
. (9.3)

Now, define Y = (Y1, . . . ,Yk) ∼ {0, 1}k to be uniform over Sm, and define for each i ∈ [k] the value

bias(Yi) := |Pr[Yi = 1]− Pr[Yi = 0]|.

For any fixed i, it is easy to verify that Prx∼Sm [g(i) = address(x, i)] ≤ (1 + bias(Yi))/2, since g(i) is a
fixed value. Thus we have

1 + ε

2
< Pr

x∼Sm
i∼[k]

[g(i) = address(x, i)] ≤
∑
i∈[k]

1

k
· 1 + bias(Yi)

2
=

1 +
∑

i bias(Yi)/k

2
,

which implies ∑
i∈[k]

bias(Yi) > kε. (9.4)

Now, lettingH(·) denote Shannon entropy, it is a straightforward calculation to show that for any random
variable Z ∼ {0, 1}, it holds that H(Z) ≤ 1− bias(Z)2/2. Using this fact, we have

log t = H(Y) ≤
∑
i∈[k]

H(Yi) ≤
∑
i∈[k]

(
1− bias(Yi)

2

2

)
= k − 1

2

∑
i∈[k]

bias(Yi)
2. (9.5)

213

Now, note that by Cauchy-Schwarz, it holds that (
∑

i bias(Yi))
2 ≤ k

∑
i bias(Yi)

2. Combining this with
Equations (9.4) and (9.5), we have:

log t ≤ k − 1

2

∑
i∈[k]

bias(Yi)
2 ≤ k − 1

2k

(∑
i

bias(Yi)

)2

< k − 1

2k
(kε)2 = k · (1− ε2/2).

At last, we can conclude that for any m ∈ M such that Equation (9.2) holds, it must also be true that
|Sm| = t < 2k·(1−ε

2/2). Now, let pm := Prx∼Sm,i∼[k][f(x, i) = address(x, i)], and observe that

1

2
+ ε ≤ Pr

x∼{0,1}k,i∼[k]
[f(x, i) = address(x, i)]

=
∑
m∈M

pm · Pr
x∼{0,1}k

[x ∈ Sm]

=
∑

m∈M:pm≤ 1+ε
2

pm · Pr
x∼{0,1}k

[x ∈ Sm] +
∑

m∈M:pm>
1+ε
2

pm · Pr
x∼{0,1}k

[x ∈ Sm]

≤ 1 + ε

2
·

∑
m∈M:pm≤ 1+ε

2

Pr
x∼{0,1}k

[x ∈ Sm] +
∑

m∈M:pm>
1+ε
2

1 · 2−k · 2k·(1−ε2/2).

≤ 1 + ε

2
· 1 + |M| · 2−kε2/2

<
1 + ε

2
+ 2s+1−kε2/2,

which implies that

s >
kε2

2
− log(1/ε)− 2.

Thus, we can finally conclude that any one-way communication protocol that computes address on ≥ 1
2 + ε

of its inputs must use s > kε2

2 − log(1/ε) − 2 ≥ nε2

3 − log(1/ε) − 2 bits of communication. In other
words, for any function f : {0, 1}k × [k] → {0, 1} computed by a one-way communication protocol over
s ≤ nε2

3 − log(1/ε)− 2 bits, it holds that

Pr
x,i
[f(x, i) = address(x, i)] <

1

2
+ ε. (9.6)

By our discussion at the beginning of this section, it immediately follows that for any ROBP f : {0, 1}n →
{0, 1} of width 2s ≤ 2

nε2

3
−log(1/ε)−2, Equation (9.6) also holds. Furthermore, this must also hold for any

2s ≤ 2
nε2

9
−log(1/ε): this trivially holds when nε2/9 < 1 (any ROBP of width 2s < 2 must have width at

most 1, and such ROBPs can only compute the address function with probability half), and when nε2/9 ≥ 1

we have 2
nε2

9
−log(1/ε) ≤ 2

nε2

3
−log(1/ε)−2. This completes the proof.

9.4.2 Sampling lower bounds against input-output pairs

In the previous section, we gave an explicit function b : {0, 1}n → {0, 1} that is hard to compute (even on
average) for ROBPs of exponential width, but such that (Un, b(Un)) is easy to sample for ROBPs of just
linear width. Next, we show how to find an explicit function b : {0, 1}n → {0, 1} such that (Un, b(Un)) is
hard to sample for ROBPs, thereby proving Theorem 9.2.

214

Theorem 9.12 (Sampling lower bounds against input-output pairs - Theorem 9.2, restated). There exists an
explicit function b : {0, 1}n → {0, 1} such that for any ROBP F : {0, 1}ℓ → {0, 1}n+1 of width at most
2n/16,

|F (Uℓ)− (Un, b(Un))| ≥
1

2
− 128 · 2−n/16.

In order to prove this result, the main ingredient we use is an explicit two-source extractor (Part I). First,
we show via the following lemma that (Un, b(Un)) is hard to sample for two-party communication proto-
cols when b is a good enough two-source extractor. Then, we instantiate this lemma with the classical inner
product (mod 2) two-source extractor [CG88], and use the connection between ROBPs and communication
protocols to obtain Theorem 9.12.

Lemma 9.7. Let Ext : {0, 1}n×{0, 1}n → {0, 1} be a two-source extractor for min-entropy k with error ε.
Then for any distribution (X,Y) ∼ {0, 1}n × {0, 1}n+1 sampled by a two-party communication protocol
with s bits of communication, it holds that

|(X,Y)− (U2n,Ext(U2n))| ≥
1

2
− ε− 2s−n+k+5

Proof. The distribution (X,Y) ∼ {0, 1}2n+1 sampled by Alice and Bob is of the form (A,B,b) ∼
{0, 1}n × {0, 1}n × {0, 1}, where A are the bits output by Alice, (B,b) are the bits output by Bob, and
these components are not necessarily independent. However, it is well-known [AST+03] that if we fix the
communication transcript between Alice and Bob, we can write (X,Y) as a convex combination of the form

(X,Y) =
∑
i∈M

pi · (A(i),B(i),b(i)),

where i runs over all possible message transcriptsM, and each A(i) ∼ {0, 1}n is independent from each
(B(i),b(i)) ∼ {0, 1}n × {0, 1}. Consider now fixing each b(i) to some b ∈ {0, 1}. Then we can write

(X,Y) =
∑

i∈M,b∈{0,1}

pi,b · (A(i,b),B(i,b), b), (9.7)

for some probabilities pi,b. Notice also that A(i,b),B(i,b) remain independent.
Now, by definition of statistical distance, it holds that for any test S ⊆ {0, 1}2n+1,

|(X,Y)− (U2n,Ext(U2n))| ≥ Pr[(X,Y) ∈ S]− Pr[(U2n,Ext(U2n)) ∈ S].

We aim to construct a test S by keeping the abovementioned convex combination in mind. Towards this
end, we start by letting t be a parameter that we will fix later. For each i ∈M and b ∈ {0, 1}, we define

Bad
(i,b)
A := {x ∈ {0, 1}n : Pr[A(i,b) = x] > 2−t},

Bad
(i,b)
B := {y ∈ {0, 1}n : Pr[B(i,b) = y] > 2−t},

Bad(i,b) :=
{
(x, y, b) ∈ {0, 1}n × {0, 1}n × {0, 1} : x ∈ Bad

(i,b)
A or y ∈ Bad

(i,b)
B

}
Bad :=

⋃
i∈M,b∈{0,1}

Bad(i,b)

215

Furthermore, we define the set

T := {(x, y, b) ∈ {0, 1}n × {0, 1}n × {0, 1} : Ext(x, y) ̸= b}.

We are ready to define our test set S ⊆ {0, 1}2n+1 as:

S := T ∪ Bad.

The goal now is to lower bound Pr[(X,Y) ∈ S], and upper bound Pr[(U2n,Ext(U2n)) ∈ S]. We start
with the latter, as it is easier. Notice that it is impossible for (U2n,Ext(U2n)) to land in T , so we just have
to worry about it landing in Bad. Notice also that each bad set of the form Bad

(i,b)
A or Bad(i,b)B has < 2t

elements, or else it contradicts the definition of probability distribution. Thus for every i ∈M, b ∈ {0, 1},

|Bad(i,b)| ≤ |Bad(i,b)A × {0, 1}n × {0, 1}|+ |{0, 1}n × Bad
(i,b)
B × {0, 1}|

< 2t+n+1 + 2n+t+1

= 2t+n+2.

Since the set of messagesM⊆ {0, 1} × {0, 1}2 × · · · × {0, 1}s has size < 2s+1, we get

|Bad| < 2s+1 · 2 · 2t+n+2 = 2s+t+n+4.

Now notice that (U2n,Ext(U2n)) assigns each element in its support a probability of 2−2n, so we have

Pr[(U2n,Ext(U2n)) ∈ S] = Pr[(U2n,Ext(U2n)) ∈ Bad] ≤ 2−2n · |Bad| < 2−n+s+t+4. (9.8)

We now move towards lower bounding Pr[(X,Y) ∈ S]. By Equation (9.7), it suffices to lower bound
Pr[(A(i,b),B(i,b), b) ∈ S] for every i, b. Now, let

p := Pr[A(i,b) /∈ Bad
(i,b)
A and B(i,b) /∈ Bad

(i,b)
B]

and note that we can rewrite Pr[(A(i,b),B(i,b), b) ∈ S] as

p · Pr[(A(i,b),B(i,b), b) ∈ S | A(i,b) /∈ Bad
(i,b)
A and B(i,b) /∈ Bad

(i,b)
B]

+(1− p) · Pr[(A(i,b),B(i,b), b) ∈ S | A(i,b) ∈ Bad
(i,b)
A or B(i,b) ∈ Bad

(i,b)
B]

Notice that the probability attached to (1 − p) will always be 1, by our construction of S. On the other
hand, in the term attached to p, we can replace S with T since (A(i,b),B(i,b), b) will never hit Bad in this
conditioning. And the probability that (A(i,b),B(i,b), b) ∈ T is, by definition of T , the probability that
Ext(A(i,b),B(i,b)) ̸= b. Thus we can rewrite the above expression as

p · Pr[Ext(A(i,b),B(i,b)) ̸= b | A(i,b) /∈ Bad
(i,b)
A and B(i,b) /∈ Bad

(i,b)
B] + (1− p).

Notice now that since A(i,b),B(i,b) were originally independent, the conditionings above keep them inde-
pendent. In particular, we can define independent random variables Ã(i,b) := (A(i,b) | A(i,b) /∈ Bad

(i,b)
A)

and B̃(i,b) := (B(i,b) | B(i,b) /∈ Bad
(i,b)
B) and the above expression becomes

p · Pr[Ext(Ã(i,b), B̃(i,b)) ̸= b] + (1− p). (9.9)

216

We would now like to get a lower bound on the entropy of each input to the extractor. Towards this end, we
start by defining the probabilities

qA := Pr[A(i,b) /∈ Bad
(i,b)
A],

qB := Pr[B(i,b) /∈ Bad
(i,b)
B],

and we observe that p = qA · qB ≤ min{qA, qB}. We now have two possible cases. In the first case, either
qA or qB is at most 1/2. In this case, p ≤ 1/2 and 1− p ≥ 1/2, which implies that Equation (9.9) is ≥ 1/2.

In the second possible case, both qA and qB are > 1/2. In this case, it is straightforward to verify the
following min entropy lower bounds:

H∞(Ã(i,b)) = log

 1

max
x/∈Bad(i,b)A

Pr[Ã(i,b) = x]

= log

 qA
max

x/∈Bad(i,b)A

Pr[A(i,b) = x]

> log

(
1
2

2−t

)
= t− 1,

where the last inequality follows from the definition of bad sets. Of course, using the same reasoning,

H∞(B̃(i,b)) > t− 1.

We are finally ready to pick t. We set it to t := k + 1, so that both of the above min-entropies become > k.
Now, since Ext is a two-source extractor for min-entropy k with error ε, and since we are calling it on two
independent sources of min-entropy k, the extractor property tells us

p · Pr[Ext(Ã(i,b), B̃(i,b)) ̸= b] + (1− p) ≥ p · (1
2
− ε) + (1− p)

= 1− p · (1
2
+ ε) ≥ 1− (

1

2
+ ε)

=
1

2
− ε.

Thus, we finally see that in the case where both qA and qB are > 1/2, then Equation (9.9) is ≥ 1/2 − ε
(given that we set t := k + 1). Thus in all cases, Equation (9.9) is ≥ 1/2 − ε. And tracing back to the
expression it originally represented, we get

Pr[(A(i,b),B(i,b), b) ∈ S] ≥ 1

2
− ε.

And we know that this holds for all i, b, since we made no assumption on their values. By Equation (9.7),
this therefore implies

Pr[(X,Y) ∈ S] ≥ 1

2
− ε, (9.10)

217

as long as we set t = k+1. Wrapping everything up, we combine Equation (9.8) and Equation (9.10) to get

|(X,Y)− (U2n,Ext(U2n))| ≥ Pr[(X,Y) ∈ S]− Pr[(U2n,Ext(U2n)) ∈ S]

>
1

2
− ε− 2−n+s+t+4

=
1

2
− ε− 2−n+s+k+5,

as desired.

Thus, we now know that two-party communication protocols have a hard time sampling (Un, b(Un))
when b is a good enough two-source extractor (Lemma 9.7). In order to actually instantiate this lemma and
obtain our sampling lower bounds (Theorem 9.12), we will use the following classic two-source extractor.

Lemma 9.8 ([CG88]). The function IP : {0, 1}n × {0, 1}n → {0, 1} that computes the inner product of its
inputs (mod 2) is a two-source extractor for min-entropy k with error ε = 2−(2k−n−1)/2.

Equipped with this extractor, we are ready to prove the main sampling lower bounds of this section.

Proof of Theorem 9.12. Let n = 2ℓ for some ℓ ∈ N, and let Ext{0, 1}ℓ × {0, 1}ℓ → {0, 1} be the inner
product extractor from Lemma 9.8 for min-entropy k and error ε = 2−(2k−ℓ−1)/2. By Lemma 9.7 we know
that for any distribution (X,Y) ∼ {0, 1}ℓ × {0, 1}ℓ+1 sampled by a two-party communication protocol
with s bits of communication, it holds that

|(X,Y)− (Un,Ext(Un))| ≥
1

2
− ε− 2s−ℓ+k+5 =

1

2
− 2−(2k−ℓ−1)/2 − 2s−ℓ+k+5.

Plugging in k = 3ℓ/4 yields

|(X,Y)− (Un,Ext(Un))| ≥
1

2
− 2s−ℓ/4+6 =

1

2
− 2s−n/8+6

Finally, by our discussion at the beginning of this section on the connection between ROBPs and communi-
cation protocols, we know that for any ℓ ∈ N and ROBP F : {0, 1}ℓ → {0, 1}n+1 of width 2s

′
,

|F (Un)− (Un,Ext(Un))| ≥
1

2
− 2s

′−n/8+7.

Setting s′ = n/16 completes the proof.

We conclude this subsection by remarking that the above result gives an input-output distribution
(Un, b(Un)) that cannot be sampled by exponential width ROBPs (even on average), but which can be
sampled by AC0 circuits. In particular, we can take b to be the inner product function, and combine the
above result with the known result [IN96] that (Un, IP(Un)) can be sampled in AC0. Moreover, combining
Theorem 9.12 with the fact that sampling lower bounds for ROBPs are stronger than correlation bounds
(Theorem 9.8), we immediately recover strong correlation bounds against the function b.

218

9.4.3 Sampling lower bounds against general distributions

As a final application of the connection between communication protocols and ROBPs, we give a very
simple distribution that is very hard to sample for ROBPs. In particular, we prove Theorem 9.3.

Theorem 9.13 (Sampling lower bounds against general distributions - Theorem 9.3, restated). There exists
an explicit distribution Q ∼ {0, 1}n such that for any ROBP F : {0, 1}ℓ → {0, 1}n of width at most 2n/12,

|F (Uℓ)−Q| ≥ 1− 16 · 2−n/12.

Proof. Let (X,Y) ∼ {0, 1}n × {0, 1}n be a distribution sampled by a two-party communication protocol
that communicates at most s bits. As we have seen, by fixing the message that Alice sends to Bob, we get
that (X,Y) is a convex combination of < 2s+1 distributions of the form (X′,Y′) ∼ {0, 1}n × {0, 1}n,
where X′,Y′ are independent. We consider any such X′,Y′, and lower bound |(X′,Y′)− (Un,Un)|.

Towards this end, let t be a parameter we fix later, and let

BAD :=
{
(s, s) ∈ {0, 1}n × {0, 1}n : Pr[X′ = s] ≥ 2−t or Pr[Y′ = s] ≥ 2−t

}
.

Notice that |BAD| ≤ 2 · 2t, and furthermore for every (s, s) /∈ BAD it holds that Pr[(X′,Y′) = (s, s)] <
2−2t. We let S := {(s, s) : s ∈ {0, 1}n}, and note that by definition of statistical distance we have

|(X′,Y′)− (Un,Un)| ≥ Pr[(Un,Un) ∈ S − BAD]− Pr[(X′,Y′) ∈ S − BAD]

> 1− 2−n · |BAD| − 2−2t · |S − BAD|
≥ 1− 2−n+t+1 − 2−2t+n.

We set t = 2n−1
3 to equalize both exponents to −n+2

3 , which yields

|(X′,Y′)− (Un,Un)| > 1− 2
−n+5

3 .

Now, recall that in the preliminaries of this thesis (Chapter 2), we proved that a convex combination of not-
too-many distributions, each far from some target distribution Q, is itself far from that target distribution Q
(Fact 2.5). As a result, we immediately get that

|(X,Y)− (Un,Un)| ≥ 1− 2s+1 · 2
−n+5

3 = 1− 2
−n+8

3
+s ≥ 1− 2−n/3+s+3. (9.11)

Finally, as discussed at the beginning of this section, for any ROBP F : {0, 1}ℓ → {0, 1}2n of width
w = 2s

′
, the distribution F (Uℓ) can be sampled by a two-party communication protocol that uses s′+1 bits

of communication. Combining this with Equation (9.11), we that for any ROBP F : {0, 1}ℓ → {0, 1}2n of
width s′, it holds that

|F (Uℓ)− (Un,Un)| ≥ 1− 2−n/3+s
′+4,

which is at least 1− 16 · 2−n/6 for s′ ≤ n/6, as desired.

Thus, we we have shown that ROBPs are remarkably bad at sampling the extremely simple distribution
(Un,Un). This provides a very strong separation between AC0 circuits and ROBPs for the task of sampling,
since AC0 circuits can clearly sample this distribution. Moreover, combining Theorem 9.13 with the fact that
sampling lower bounds for ROBPs are stronger than covariance bounds (Theorem 9.10), we immediately
obtain strong covariance bounds against the equality function EQ : {0, 1}n × {0, 1}n → {0, 1}, which
simply outputs 1 whenever its two inputs are the same. This completes the presentation, discussion, and
proofs of our three basic results on the complexity of sampling (Theorems 9.1 to 9.3). With this foundation
in place, we are finally ready to move towards proving the two main theorems of this chapter.

219

9.5 Sampling lower bounds against codes

In this section, we prove our first main theorem, giving tight sampling lower bounds against codes.

Theorem 9.14 (Sampling lower bounds against codes - Theorem 9.4, restated). Let Q ∼ {0, 1}n be uniform
over an (n, k, d) code of dimension k. Then for any ROBP F : {0, 1}ℓ → {0, 1}n of width w,

|F (Uℓ)−Q| ≥ 1− 12w · 2−
kd
4n .

Theorem 9.15 (Tightness - Remark 9.1, formal). There is a universal constantC > 0 such that the following
holds. For all n, k, d ∈ N such that there exists a linear [n, k, d] code, there exists a distribution Q ∼ {0, 1}n

uniform over a linear [n, k, d] code and an ROBP F : {0, 1}ℓ → {0, 1}n of width w ≤ C · 2C·
kd
n

logn and
length ℓ = n2 such that F (Uℓ) = Q.

Theorem 9.14 asserts that for any distribution Q ∼ {0, 1}n uniform over a good code, the output
distribution of any ROBP of width 2Ω(n) has statistical distance 1−2−Ω(n) from Q. Moreover, this statistical
distance remains exponentially close to 1 (that is, of the form 1−2−nΩ(1)

) for ROBPs of width 2n
Ω(1)

, even if
the code parameters are of the form kd ≥ n1+Ω(1). In the context of AC0 circuits, achieving such sampling
lower bounds were left as an open question by Beck, Impagliazzo and Lovett [BIL12]. Finally, combining
Theorem 9.14 with one of our sampling-computing equivalence theorems (Theorem 9.9), we immediately
get that ROBPs of exponential width cannot test membership of a good code. In fact, using the average-case
version of this equivalence (Theorem 9.10) yields the following stronger covariance bounds (Definition 9.9).

Corollary 9.3. Let b : {0, 1}n → {0, 1} be the indicator function of a good code Q ⊆ {0, 1}n. Then for
any ROBP F : {0, 1}n → {0, 1} of width 2Ω(n), it holds that | cov(F, b)| ≤ 2−Ω(n).

We now turn towards proving our tight sampling lower bounds.

9.5.1 Sampling lower bounds against list-decodable codes

In order to prove Theorem 9.14, we actually prove more general lower bounds against list-decodable codes.

Theorem 9.16 (Sampling lower bounds against list-decodable codes). Let Q ∼ {0, 1}n be uniform over a
(ρ, L)-list-decodable code of dimension k. Then for any ROBP F : {0, 1}ℓ → {0, 1}n of width w,

|F (Uℓ)−Q| ≥ 1− 8wL · 2−
ρ

1+2ρ
k
.

As a reminder, list-decodable codes naturally generalize classical error-correcting codes (Definition 2.9).
Indeed, a (ρ, L)-list-decodable code of dimension k is just a subset Q ⊆ {0, 1}n of size 2k such that any
Hamming ball of radius ρn contains at most L points from Q. Thus, any classical (n, k, d) code Q is a
(ρ, 1)-list-decodable code of dimension k for any ρ < d

2n (Fact 2.10), and combining this with Theorem 9.16
immediately yields Theorem 9.14. Because of this, we will just focus on proving Theorem 9.16. In fact, we
actually focus on proving such a result for KRVZ samplers, which are much easier to work with.

Theorem 9.17 (Sampling lower bounds against list-decodable codes). Let Q ∼ {0, 1}n be uniform over a
(ρ, L)-list-decodable code of dimension k. Then for any KRVZ sampler X ∼ {0, 1}n of width w,

|X−Q| ≥ 1− 4wL · 2−
ρ

1+2ρ
k
.

220

By combining the above result with our equivalence theorem for KRVZ and ROBP samplers (Theo-
rem 9.6), we immediately obtain Theorem 9.16. Thus, in order to obtain our sampling lower bounds against
codes for ROBPs, all we must do is prove Theorem 9.17. And indeed, this will be our main focus here.
However, even though KRVZ samplers are easier to work with, that doesn’t mean that Theorem 9.17 will be
easy to prove. Thus, we start with a high-level overview of the plan, before giving the proof in full formality.

An overview of the proof

The proof of Theorem 9.17 uses two main ingredients. First, it uses a known result (Lemma 3.22) which
says that any KRVZ sampler X ∼ {0, 1}n can be written as a convex combination of a few product dis-
tributions. More formally, if the sampler has width w, then for any r, ℓ with rℓ = n, it can be written as
a convex combination of wr distributions of the form Y = (Y1, . . . ,Yr) ∼ ({0, 1}ℓ)r, where each Yi is
independent. The second ingredient, which we will prove, is that product distributions, i.e., those of the
above form, are statistically far from (distributions that are uniform over) good list-decodable codes.

At this point, it would be nice to conclude that the original KRVZ sampler X must also be far from
a good list-decodable code Q. In particular, we would like to argue that X is a convex combination of
product distributions {Y(j)}, and each of these product distributions is far from Q, so X must be far from
Q. Unfortunately, the bounds we are trying to lift are in the wrong direction: It is true that if each Y(j) is
close to Q, then X is close to Q, but it is not necessarily true that if each Y(j) is far from Q, then X is
far from Q. Indeed, each Y(j) could be constant over a (different) codeword, which would make each Y(j)

extremely far from Q, but still allow the overall convex combination over {Y(j)} to exactly sample Q.
Given the above counterexample, a new idea might be to try to argue that as long as there aren’t too

many distributions Y(j) participating in the convex combination, then if each Y(j) is far from Q, then X
is relatively far from Q. It turns out this is true (Fact 2.5), but the corresponding lower bounds on |X−Q|
that it yields are still not as strong as we would like. To get the strongest possible bounds, we need a slightly
more nuanced way to combine our two key ingredients. Below, we sketch a proof for our second ingredient,
and show how to combine it with the first ingredient to yield our desired lower bound on |X−Q|.

Anti-concentration of product distributions in Hamming balls We now argue that product distributions
are far from sampling good list-decodable codes. Let Q ∼ {0, 1}n be a (ρ, L) list-decodable code, and let
Y = (Y1, . . . ,Yr) ∼ ({0, 1}ℓ)r be such that each Yi is independent and rℓ = n. Furthermore, we will
need the product distribution to have a reasonable number of components r, or else it could clearly sample
the code perfectly (if r = 1). Towards this end, we enforce the mild requirement r ≥ 1/ρ, and thus ℓ ≤ ρn.
For a good list-decodable code, we can think of ρ = Ω(1), and thus we just require r ≥ O(1).

Now, the key intuition about product distributions is that for any point x in the space {0, 1}n to which
Y does not assign too much probability, the following must hold: if we draw a Hamming ball B(x) around
x whose radius is not too small, then the vast majority of probability weight assigned to B(x) by Y does not
land on x. In symbols, Pr[Y ∈ B(x)]≫ Pr[Y = x].

Let us formalize this intuition a little more. Fix any x ∈ {0, 1}n, and let p := Pr[Y = x]. Consider now
the ball Bℓ(x) around x of radius ℓ. Now, parse x as x = (x1, . . . , xr) ∈ ({0, 1}ℓ)r. Since Y is a product
distribution consisting of r components, there must be at least some i ∈ [r] such that Pr[Yi = xi] ≤ p1/r.
Consider now the set T of all strings of the form (x1, . . . , xi−1, z, xi+1, . . . , xr) ∈ ({0, 1}ℓ)r, where each
xj is fixed as before, but z can be taken as any element in {0, 1}ℓ. Then Y assigns probability at least
Pr[Y = x]/p1/r to the set T , and of course T is in the ball Bℓ(x). Thus, we get that Pr[Y ∈ B(x)] ≥
Pr[Y = x]/p1/r, and therefore Pr[Y ∈ B(x)]≫ Pr[Y = x], as long as p is not too big.

221

Now, how can we use this to show |Y−Q| is large? Well, by definition of statistical distance, it suffices
to pick a set S ⊆ {0, 1}n and show that Pr[Q ∈ S] − Pr[Y ∈ S] is large. Our choice for S will be all
codewords from Q, with some “bad” codewords Bad removed. Then to lower bound Pr[Q ∈ S], we just
need to show that Q lands in Bad with not too high probability: in particular, we can just require that Bad
is not too big. And to upper bound Pr[Y ∈ S], we just need to show that the probability that Y lands on a
“not-bad” codeword is small.

So what should we choose as the set Bad? You guessed it: a small set of codewords assigned the highest
probability by Y (say, all codewords assigned probability ≥ p for some threshold probability p). As long as
this set isn’t too big (i.e., p isn’t too small), we will have Pr[Q ∈ S] be very close to 1. And as long as we
removed the codewords assigned very high probability by Y, we will have that Pr[Y ∈ S] is very close to
0. We argue the latter, below.

To upper bound the probability that Y lands in S, we consider the sum
∑

q∈S Pr[Y = q]. By our anti-
concentration observation above, this sum is at most p1/r ·

∑
q∈S Pr[Y ∈ Bℓ(q)]. Intuitively, we will now

want to make sure that (i) r is not too big, because otherwise p1/r will be too big; and (ii) ℓ is not too big,
because otherwise many of the balls {Bℓ(q)} in the sum will have big overlaps, causing probabilities to be
multi-counted and the overall sum to be large.

It turns out that the best tradeoff occurs at setting r = 1/ρ and ℓ = ρn. This is because a good list-
decodable code will have ρ = Ω(1), which yields p1/r = pΩ(1), which will be quite small as long as we
originally set our threshold probability p to be low enough. Similarly, by definition of list-decodability, we
will have that any point x in the space {0, 1}n will appear in at most L balls {Bℓ(q)}q∈S . This implies∑

q∈S Pr[Y ∈ Bℓ(q)] ≤ L, since the probability Y assigns to any point x ∈ {0, 1}n is counted at most L
times. For a good list-decodable code, L is quite small, and we finally have that Pr[Y ∈ S] ≤ p1/r · L will
be very close to 0.

Thus, as long as our original product distribution Y ∼ ({0, 1}ℓ)r had r ≈ 1/ρ and ℓ ≈ ρn, we have
a set S ⊆ {0, 1}n that makes Pr[Q ∈ S] − Pr[Y ∈ S] very close to 1, implying the statistical distance
|Y −Q| is very close to 1.

From KRVZ samplers to product distributions Now, the question is: how do we use the fact that
product distributions are far from good list-decodable codes in order to argue that KRVZ samplers are far
from list-decodable codes? Well, let X ∼ {0, 1}n be the KRVZ sampler, and Q ∼ {0, 1}n be the list-
decodable code. We need to show that |X−Q| is large. So we write X as a convex combination of at most
wr product distributions {Y(j)}j , each of the form Y(j) = (Y

(j)
1 , . . . ,Y

(j)
r) ∼ ({0, 1}ℓ)r.

For any tester S ⊆ {0, 1}n, the statistical distance |X−Q| is lower bounded by Pr[Q ∈ S]−Pr[X ∈ S].
Furthermore, it is easy to verify that this, in turn, is lower bounded by the worst Pr[Q ∈ S]−Pr[Y(j) ∈ S]
(meaning the one that gives the smallest value). So what S should we pick?

From above, we know that as long as we set r = 1/ρ and ℓ = ρn, then each Y(j) has a test S(j) which
makes Pr[Y(j) ∈ S(j)] very close to 0. Furthermore S(j) is of the form Q− Bad(j), where Q is the support
of the code and Bad(j) is some small bad set. Thus, since we want a single test S ⊆ {0, 1}n guaranteed to
make Pr[Q ∈ S] − Pr[Y(j) ∈ S] small for every j, we can simply take the test to be S = Q − ∪jBad(j).
Indeed, this guarantees that each Pr[Y(j) ∈ S] will be very close to 0, and as long as there are not too many
elements in the convex combination, our total collection of bad elements won’t be too big, and Pr[Q ∈ S]
will stay very close to 1. Thus we get that |X−Q| is close to 1, as desired.

222

A formal presentation of the proof

Now that we have a high-level idea of how our proof will work, we are ready to present it in full formality.

Proof of Theorem 9.17. We start by writing our KRVZ sampler as a convex combination of random variables
with nice structure. Let W = (W1, . . . ,Wn) be the vertices hit on the random walk that generates X
(excluding the start vertex of the branching program). Let r, ℓ be positive integers that will be set later
to ensure rℓ = n. Define W∗ = (Wℓ,W2ℓ, . . . ,Wrℓ), and recall the following standard observation
(Lemma 3.22): for any W ∈ support(W∗), the random variable (X |W∗ = W) is of the form X(W) :=

(X
(W)
1 ,X

(W)
2 , . . . ,X

(W)
r), where each X

(W)
i ∼ {0, 1}ℓ is independent. Thus the KRVZ sampler X is a

convex combination of the form
X =

∑
W∈support(W∗)

pW ·X(W),

where each pW := Pr[W∗ =W].
The goal now is to use the above decomposition to help us get a good lower bound on |X − Q| =

maxS |Pr[X ∈ S]− Pr[Q ∈ S]|. Towards this end, we note that for any S,

|X−Q| ≥ Pr[Q ∈ S]− Pr[X ∈ S] = Pr[Q ∈ S]−
∑
W

pW · Pr[X(W) ∈ S]

≥ Pr[Q ∈ S]−max
W

Pr[X(W) ∈ S].

Thus, we would like to pick a test S that maximizes the quantity Pr[Q ∈ S] while minimizing the
quantity maxW Pr[X(W) ∈ S]. A natural candidate for S is the entire codebook Q = support(Q), minus
some small set of “bad codewords” Bad, which are assigned too high of a probability by some X(W). As
such, we let t > 0 be a parameter to be set later, and we define S = Q− Bad where

Bad :=
⋃
W

Bad(W),

Bad(W) := {q ∈ Q : Pr[X(W) = q] > 2−t}.

Plugging in this definition of S, we get

|X−Q| ≥ Pr[Q ∈ Q− Bad]−max
W

Pr[X(W) ∈ Q− Bad]

≥ 1− Pr[Q ∈ Bad]−max
W

Pr[X(W) ∈ Q− Bad(W)].

Thus, we would like to upper bound both quantities that are subtracted. To upper bound the first quantity,
simply note that

Pr[Q ∈ Bad] = 2−k · |Bad| ≤ 2−k
∑

W∈support(W∗)

|Bad(W)| < 2−k+t+r log(w)

via the trivial upper bounds |support(W∗)| ≤ wr and |Bad(W)| < 2t for each W .
To upper bound the second quantity maxW Pr[X(W) ∈ Q−Bad(W)], we start by making notation more

convenient: let W ∗ be the maximizer of the above quantity, and define Y := X(W ∗) and Bad∗ := Bad(W
∗).

Of course we have maxW Pr[X(W) ∈ Q−Bad(W)] = Pr[Y ∈ Q−Bad∗], and we focus on upper bounding
the latter.

223

Recall that Y is of the form Y = (Y1, . . . ,Yr) where each Yi ∼ {0, 1}ℓ is independent, and Bad∗ :=
{q ∈ Q : Pr[Y = q] > 2−t} contains all codewords hit by Y with large probability. Thus each q ∈
Q−Bad∗ must have Pr[Y = q] ≤ 2−t. So, if we parse each q as (q1, q2, . . . , qr) ∈ ({0, 1}ℓ)r, we have that
Pr[Y = q] = Pr[Y1 = q1] · Pr[Y2 = q2] · · ·Pr[Yr = qr] by the independence of these random variables,
and so there must be some π(q) ∈ [r] such that Pr[Yπ(q) = qπ(q)] ≤ 2−t/r.

Now, for a string x = (x1, x2, . . . , xr) ∈ ({0, 1}ℓ)r, we let x−i := (x1, . . . , xi−1, xi+1, . . . , xr) denote
x with its ith chunk removed, and proceed as follows:

Pr[Y ∈ Q− Bad∗] =
∑

q∈Q−Bad∗
Pr[Y = q]

=
∑

q∈Q−Bad∗
Pr[Yπ(q) = qπ(q)] · Pr[Y−π(q) = q−π(q)]

≤ 2−t/r
∑

q∈Q−Bad∗
Pr[Y−π(q) = q−π(q)]

≤ 2−t/r
∑

q∈Q−Bad∗
Pr[Y ∈ Ball(q, ℓ)]

= 2−t/r
∑

v∈{0,1}n
Pr[Y = v] ·#{q ∈ Q− Bad∗ : v ∈ Ball(q, ℓ)}

≤ 2−t/r
∑

v∈{0,1}n
Pr[Y = v] ·#{q ∈ Q : ∆(v, q) ≤ ℓ}

≤ 2−t/r
∑

v∈{0,1}n
Pr[Y = v] · |Ball(v, ℓ) ∩Q|

≤ 2−t/r ·max
v
|Ball(v, ℓ) ∩Q|

≤ 2−t/r · L if ℓ ≤ ρn,

where the last line follows since Q is a (ρ, L)-list-decodable code (Definition 2.9). Thus, provided that we
have selected r, ℓ ∈ N such that rℓ = n and ℓ ≤ ρn, we can combine all of the above to get

|X−Q| ≥ 1− Pr[Q ∈ Bad]−max
W

Pr[X(W) ∈ Q− Bad(W)]

= 1− Pr[Q ∈ Bad]− Pr[Y ∈ Q− Bad∗]

> 1− 2−k+t+r logw − 2−t/r+logL.

Before picking r, ℓ, we set16 t = r
r+1 ·(k−r logw+logL) as the value that equalizes the two exponents

to − 1
r+1 · (k − r logw + logL) + logL ≤ − k

r+1 + log(wL) to obtain

|X−Q| > 1− 2−t/r+logL+1 ≥ 1− 2−
k

r+1
+log(wL)+1.

Thus all that remains is to pick r, ℓ ∈ N such that rℓ = n. If 1/ρ and ρn are integers, we simply set r = 1/ρ
and ℓ = ρn to obtain

|X−Q| > 1− 2−
k

r+1
+log(wL)+1 = 1− 2wL · 2−

ρ
1+ρ

k
.

16Technically we originally asked for t > 0, but we may assume this without loss of generality, since if this setting of t is
nonpositive, then the claimed result will become |X−Q| ≥ 0, which is trivially true.

224

If 1/ρ and ρn are not integers, there is an easy way to slightly modify the proof so that everything works
out (with a minor loss in parameters): first, recall that we originally defined W∗ = (Wℓ,W2ℓ, . . . ,Wrℓ)

so that each (X |W∗ = W) is of the form X(W) := (X
(W)
1 , . . . ,X

(W)
r), where each X

(W)
i is independent

and over ℓ bits. Observe that the argument actually does not require that each X
(W)
i has the same length;

instead, it simply requires that each X
(W)
i has length at most ρn. Thus, we could have actually started with

any W∗ of the form
W∗ = (Wα1 ,Wα2 , . . . ,Wαr),

where 0 < α1 < α2 < · · · < αr = n, and each gap αj−αj−1 is bounded above by ρn. And the exact same
argument as above yields

|X−Q| > 1− 2−
k

r+1
+log(wL)+1. (9.12)

Thus, we now have more flexibility in dealing with the case where 1/ρ and ρn are not integers: we can
simply pick an integer r and define 0 < α1 < α2 < · · · < αr = n such that each gap is at most ρn. In more
detail, we can force the first r − 1 gaps to be exactly ⌊ρn⌋, while the last gap is at most ⌊ρn⌋, by picking
r :=

⌈
n
⌊ρn⌋

⌉
and setting αj := ⌊ρn⌋ · j for all j ∈ [r − 1].

Before we plug the value of r into Equation (9.12), it is useful to get a clean lower bound on 1
r+1 :

1

r + 1
=

1

⌈ n
⌊ρn⌋⌉+ 1

≥ 1
n
⌊ρn⌋ + 2

≥ 1
n

ρn−1 + 2

=
ρn− 1

n+ 2(ρn− 1)
=

ρn

n+ 2(ρn− 1)
− 1

n+ 2(ρn− 1)

≥ ρn

n+ 2ρn
− 1

n
=

ρ

1 + 2ρ
− 1

n
≥ ρ

1 + 2ρ
− 1

k
,

where the last inequality follows since k ≤ n, because a code’s dimension cannot exceed the dimension in
which it lives. At last, we can plug our lower bound for 1/(r + 1) into Equation (9.12) to obtain

|X−Q| > 1− 2−
k

r+1
+log(wL)+1 ≥ 1− 2

−k·(ρ
1+2ρ

− 1
k
)+log(wL)+1

= 1− 4wL · 2−
ρ

1+2ρ
k
,

which completes the proof.

9.5.2 Sampling upper bounds against uniquely-decodable codes

In the previous section, we gave very general sampling lower bounds against list-decodable codes for
KRVZ samplers, via Theorem 9.17. By combining this result with the list-decodability of (n, k, d) codes
(Fact 2.10), we immediately obtain the following sampling lower bounds against (n, k, d) codes.

Theorem 9.18 (Sampling lower bounds against codes). Let Q ∼ {0, 1}n be uniform over an (n, k, d) code.
Then for any KRVZ sampler X ∼ {0, 1}n of width w,

|X−Q| ≥ 1− 8w · 2−
kd
4n .

In this section, we will prove that this result is almost tight, in the following sense. For almost all valid
parameters n, k, d, there exists an (n, k, d) code Q ∼ {0, 1}n that can be exactly sampled by a KRVZ
sampler of width w = 2Õ(kd

n
). In fact, we will actually prove a stronger result, and show that such a code

can be generated by simple samplers (Definition 9.6) that are granular (Definition 9.7).

225

Theorem 9.19 (Tightness). There is a universal constant C > 0 such that the following holds. For all
n, k, d ∈ N such that there exists a linear [n, k, d] code, there exists a distribution Q ∼ {0, 1}n uniform
over a linear [n, k, d] code that can be exactly generated by a 2−n-granular simple sampler X ∼ {0, 1}n of
width w ≤ C · 2C·

kd
n
·logn.

Since we know that granular samplers can be perfectly simulated by ROBP samplers (Lemma 9.5),
the above is all we need to show in order to immediately obtain our tightness result for ROBP samplers
(Theorem 9.15). However, Theorem 9.19 will not be trivial to prove. Thus, let’s begin with a proof overview.

An overview of the proof

Our proof of tightness is split into two cases. In the first case, we consider k ≤ 0.9n. Here, the general
idea is to define some n′, k′, d′ such that there exists an (n′, k′, d′) code Q′, and then simply consider the
repetition code Q := Q′ × Q′ × · · · × Q′, where n/n′ copies of Q′ participate in the Cartesian product. It
is straightforward to verify that Q will be an (n, k′n/n′, d′) code. Furthermore, it is not hard to see that a
simple sampler of width w can sample any distribution with support size w (Fact 9.1), and that the product
distribution of two distributions, each samplable by a simple sampler of width w, is also samplable by a
simple sampler of width w (Fact 9.3). Thus, Q will be samplable by a simple sampler of width 2k

′
. Thus, if

we can find a constant C and an (n′, k′, d′) code with n′ = Cd, k′ = Ckd/n, d′ = d, we are done with this
case. Since k ≤ 0.9n, the Gilbert-Varshamov bound (Theorem 2.1) guarantees this is always possible.

In the second case, we consider k > 0.9n. Here, the general idea is that n − k will now be small.
We consider two subcases: k ≥ n − 4d log n and k < n − 4d log n. We focus on the first subcase in this
overview, as it is not too hard to extend the argument to work for the second subcase. In the first subcase,
note that n − k ≤ 4d log n. Now, the main idea is that ROBPs can check membership of a k dimensional
subspace Q ⊆ Fn2 using width 2n−k, simply by keeping track of the n − k parity checks that define Q.
Furthermore, it is not too hard to show that for any ROBP of width w, the uniform distribution over its
accepting strings can be generated by a simple sampler of width w (Theorem 9.9). Thus in this case, we
can simply take any linear (n, k, d) code and uniformly sample from it using a simple sampler of width
2n−k ≤ 24d logn ≤ 2

5kd
n
·logn, where the last inequality follows from the current case k > 0.9n.

A formal presentation of the proof

With the above roadmap in mind, we now turn to our formal proof of tightness.

Proof of Theorem 9.19. As promised, we split the casework into k ≤ 0.9n and k > 0.9n.

Case 1 (k ≤ 0.9n) We will show that there is a linear [n, k, d] code Q ⊆ {0, 1}n such that the uniform
distribution Q over Q can be sampled in width w ≤ C · 2Ckd/n for a sufficiently large constant C. To
construct Q, the general idea will be to take an [n′, k′, d′] code Q′ over a smaller space {0, 1}n′

and repeat
it n/n′ times. In more detail, let C be a sufficiently large constant to be chosen later, and set n′ = Cd.
We will aim to repeat our smaller code t := ⌊n/n′⌋ times. We may assume t ≥ 20: Otherwise, 20n′/n =
20Cd/n > 1 and we can sample the linear [n, k, d] code (guaranteed to exist by the hypothesis) by a simple
sampler of width w = 2k < 2k·20Cd/n (by Fact 9.1), and we are done. So we can henceforth assume t ≥ 20.

Note that there must be some integers n1, . . . , nt such that each ni ≥ n′ and
∑

i ni = n. Suppose now
that there exist a collection of codes {Qi}i∈[t] such that all of the following hold:

• Each Qi is a linear [ni, ki, di] code.

226

• Each ki = ⌈k/t⌉.

• Each di = d.

Then
∑

i ki ≥ k, and we may of course find a collection of linear codes {Q′i}i∈[t] with the same properties
as {Qi}i∈[t], except that the property ki = ⌈k/t⌉ is traded for the properties ki ≤ ⌈k/t⌉ and

∑
i ki = k

(simply by reducing the dimension of each code by an appropriate amount). Notice that Q′1×Q′2×· · ·×Q′t
is then a linear [n, k, d] code. Furthermore, by combining Fact 9.1 and Fact 9.3, this code can be exactly
generated by a simple sampler X ∼ {0, 1}n of width w ≤ 2⌈

k
t
⌉ ≤ 2 · 22C·

kd
n .

Thus all that remains for this case is to show the existence of a collection of codes {Qi}i∈[t] with the
above mentioned properties. For this, it suffices to show the existence of a linear [n′, k′, d′] code, where

n′ = Cd,

k′ =

⌈
k

t

⌉
=

⌈
k

⌊ nCd⌋

⌉
,

d′ = d.

By the Gilbert-Varshamov bound (Theorem 2.1), such a code exists as long as 2k
′ ≤ 2n

′
/
(

n′

≤d′−1
)
. Plugging

in the above values for n′, k′, d′, a straightforward calculation (using the case condition that k/n ≤ 0.9)
shows that such a code must exist whenever C ≥ 250. Thus we can always find a linear [n, k, d] code
Q ⊆ {0, 1}n such that the uniform distribution Q over Q can be sampled in width w ≤ 2 · 25000·kd/n.

Case 2 (k > 0.9n) We will show that there exists a linear [n, k, d] code Q ⊆ {0, 1}n such that the uniform
distribution Q over Q can be sampled in width w ≤ 2C·

kd
n

logn for a sufficiently large constant C. To
construct Q, the general idea will be to start with a code Q′ of dimension k′ ≫ k, show that membership in
Q′ can be checked by a small width ROBP (by keeping track of parity checks), and then convert this into a
simple sampler via Theorem 9.9. Then, it will not be too difficult to reduce the dimension ofQ′ to match the
target dimension k, while barely affecting the width of the sampler. In more detail, let k′ := n−⌈4d log n⌉.
We consider the subcases k ≥ k′ and k < k′.

Subcase 2.1 (k ≥ k′) By the theorem hypothesis, we know that there is a linear [n, k, d] codeQ ⊆ {0, 1}n.
Let Q⊥ denote its dual, and recall that Q⊥ must therefore have dimension n − k. In other words, we can
find a basis v(1), . . . , v(n−k) of Q⊥. Now, define a function f : Fn2 → F2 such that f(x) = 1 if and only if
⟨x, v(i)⟩ = 0 over F2, for all i ∈ [n− k]. That is, f accepts exactly the strings in (Q⊥)⊥ = Q.

We can now design a low width ROBP that computes f . To do so, the ROBP keeps as its state a string
s ∈ Fn−k2 , which is originally initialized to the all zeroes vector. Upon reading a bit xi ∈ {0, 1}, the
ROBP considers a vector u(i) ∈ Fn−k2 which consists of the ith bit of each of v(1), . . . , v(n−k) concatenated
together. Then, the ROBP transitions to state s + xi · u(i). In its final layer, the ROBP treats the all zeroes
state as the accept state, and every other state as a reject state.

It is straightforward to verify that the above ROBP has width 2n−k, and that the state s ∈ Fn−k2 it reaches
in the final layer is exactly (⟨x, v(1)⟩, . . . , ⟨x, y(n−k)⟩). Since the ROBP accepts if and only if this is the all
zeroes vector, we see that the ROBP exactly computes f . And since f−1(1) = Q, we can apply Theorem 9.9
to get a simple sampler of width w = 2n−k that samples the uniform distribution Q over Q. Since we have
k ≥ k′ = n − ⌈4d log n⌉, we know n − k ≤ ⌈4d log n⌉ ≤ 5d log n < 2 · kn · 5d log n, where the last
inequality follows from the case condition k/n > 0.9. Thus our simple sampler for our [n, k, d] code Q has
width w < 210·

kd
n

logn, as desired.

227

Subcase 2.2 (k < k′) Let t := k′ − k ≥ 1. By the Gilbert-Varshamov bound (Theorem 2.1), there must
exist a linear [n, k′, d] code Q′ ⊆ Fn2 . As we have seen above, Q′ is easy to sample. But we would like to
sample an [n, k, d] code using approximately the same width. To do so, we will find a subcode of Q′ that is
easy to sample.

Since Q′ is a linear [n, k′, d] code, it must have some vector q of Hamming weight d. Without loss of
generality, we may assume the first d coordinates of q are 1, and the last n− d coordinates are 0. Consider
now the orthogonal complement Sq of {0, q}. Note that Sq has dimension n − 1. Furthermore, consider
defining so-called “augmented elementary basis vectors” {ê(i)}i∈[n],i ̸=d as follows: for each i < d, let
ê(i) := e(i)+ e(i+1), and for each i > d, let ê(i) := e(i), where each e(i) ∈ Fn2 denotes a standard elementary
basis vector. Then {ê(i)} is a basis for Sq.

Now let v(1), . . . , v(n−k
′) be an arbitrary basis for the orthogonal complement (Q′)⊥. By straight-

forward linear algebra, there must be at least k′ − 1 vectors in {ê(i)}i that are mutually independent
with v(1), . . . , v(n−k

′). Without loss of generality, assume they are ê(1), . . . , ê(k
′−1). Notice now that

t ≤ k′ − 1 (since we may assume k ≥ 1), and consider the subspace Q̃ spanned by basis vectors
v(1), . . . , v(n−k

′), ê(1), . . . , ê(t). Observe that Q̃ has dimension n− k′ + t = n− k.
Finally, let Q∗ := Q̃⊥. Notice that Q∗ has dimension n − (n − k) = k and that Q∗ is a subspace

of ((Q′)⊥)⊥ = Q′. Thus Q∗ has minimum distance ≥ d. In fact, by our basis selection for Q̃, it is
straightforward to verify that the Hamming-weight d vector q defined earlier is also in Q∗ (since q has inner
product 0 with all the basis vectors of Q̃). Thus, Q∗ has minimum distance exactly d and it is therefore a
linear [n, k, d] code. Thus all that remains is to show that the uniform distribution over Q∗ can be sampled
by a low width simple sampler.

As in the first case of this proof, let f : Fn2 → F2 be defined such that f(x) = 1 if and only if ⟨x, v⟩ = 0
for all v ∈ {v(1), . . . , v(n−k′), ê(1), . . . , ê(t)}. In other words, f tests membership in Q∗. Thus, if there is
an ROBP of width w that computes f , then there is a simple sampler of width w that samples the uniform
distribution Q over Q∗, by Theorem 9.9.

We now design a low width ROBP that computes f as follows. The state space of the ROBP will be
Fn−k

′

2 × {0, 1} × {0, 1}, and it will start at state s = (⃗0, 0, 0). Informally, the first part of the state will
keep track of the parity checks v(1), . . . , v(n−k

′), while the remaining two parts will keep track of the parity
checks ê(1), . . . , ê(t) through a more compressed representation (which is enabled by the fact that these basis
vectors each have Hamming weight at most 2).

More formally, suppose the ROBP is reading the string x ∈ {0, 1}n, and at time i − 1 it arrive at state
(z, b, c) ∈ Fn−k

′

2 × {0, 1} × {0, 1}. Upon reading the next bit xi, the ROBP will transition to the state
(z′, b′, c′), defined as follows. First, let u(i) ∈ Fn−k

′

2 be the string that consists of the ith bit of each of
v(1), . . . , v(n−k

′). Then, define z′ := z + xi · u(i).
Next, define b′ := xi.
Finally, we define c′ as follows. If c = 1 then keep c′ as 1 (this indicates one of the parity checks

ê(1), . . . , ê(t) has already been violated). If i = 1 then keep c′ as 0. If 1 < i ≤ d then set c = 1 if and only
if b ̸= xi (since this means ⟨x, ê(i−1)⟩ = 1). And if d < i ≤ n, set c = xi (since ⟨x, ê(i)⟩ = xi).

In the last layer of the ROBP, let all zeroes string (⃗0, 0, 0) be the accept state, and every other string
in Fn−k

′

2 × {0, 1} × {0, 1} be a reject state. It is straightforward to verify that the accept state is hit if
and only if x has inner product 0 with each of v(1), . . . , v(n−k

′), ê(1), . . . , ê(t). Furthermore, this ROBP has
width w = |Fn−k′2 × {0, 1} × {0, 1}| = 2n−k

′+2 = 2⌈4d logn⌉+2 < 22
k
n
·4d logn+3, where the last inequality

follows from the case condition k/n > 0.9. Thus by Theorem 9.9, there is a simple sampler of width
w < 8 · 28·

kd
n

logn that samples the uniform distribution Q over the linear [n, k, d] code Q∗, as desired.

228

This completes the presentation, discussion, and proof of our tight sampling lower bounds for ROBPs
against codes. Next, let’s move to pursue sampling lower bounds via a completely different technique.

9.6 Sampling lower bounds via direct product theorems

In this section, we present our direct product theorem, which gives a powerful and generic way to obtain
sampling lower bounds. We prove the following strong direct product theorem for sampling with ROBPs.

Theorem 9.20 (Direct product theorem - Theorem 9.5, restated). Let Q ∼ {0, 1}n be a distribution such
that for any ROBP F : {0, 1}ℓ → {0, 1}n of width w, it holds that |F (Uℓ) −Q| ≥ δ. Then for any t ∈ N
and ROBP F ∗ : {0, 1}ℓ∗ → {0, 1}nt of width w, it holds that

|F ∗(Uℓ∗)−Q⊗t| ≥ 1− e−tδ2/4.

We view this result as the second main theorem and contribution of this chapter. At a high level, Theo-
rem 9.20 says that if a distribution Q ∼ {0, 1}n has statistical distance ≥ δ from distributions sampled by
ROBPs of width w, then Q⊗t ∼ {0, 1}nt has statistical distance ≥ 1− 2−Ω(tδ2) from distributions sampled
by ROBPs of width w.17 Notably, this blow-up in statistical distance is experienced without decreasing the
power of the sampling model at all (e.g., by decreasing this width), and indeed, this is what we mean when
we say that Theorem 9.20 is a strong direct product theorem. To start, let us sketch an overview of its proof.

An overview of the proof

To prove the above direct product theorem, we start by proving an analogous result for KRVZ samplers.
Then, we use our equivalence theorem to obtain a direct product theorem for sampling with ROBPs. How-
ever, since our equivalence theorem (Theorem 9.6) has some loss in parameters (width), this will only yield
a weak direct product theorem. Namely, the statistical distance still blows up from δ to 1 − 2−Ω(tδ2), but
only if we also require the width to decrease from w to w/14. We would really like a strong direct product
theorem, in the sense that the statistical distance blows up even if the ROBP is allowed to keep all of its
width w. At the end of this subsection, we show how to build some extra machinery to make this happen.

A direct product theorem for KRVZ samplers We now proceed to sketch the proof of our direct product
theorem for KRVZ samplers. Let X ∼ {0, 1}nt be a distribution generated by a KRVZ sampler of width
w, and parse it as X = (X1, . . . ,Xt), where each Xi ∼ {0, 1}n need not be independent. Recall that
Q⊗t ∼ {0, 1}nt is of the form Q⊗t = (Q1, . . . ,Qt), where each Qi ∼ {0, 1}n is an independent copy of
Q. We would like to argue

|(X1, . . . ,Xt)− (Q1, . . . ,Qt)| ≥ 1− 2−Ω(tδ2), (9.13)

given that for any KRVZ sampler X′ ∼ {0, 1}n of width w it holds that |X′−Q| ≥ δ. The first observation
is that any of the Xi ∼ {0, 1}n can be generated by a KRVZ sampler of width w. Indeed, even though it
represents a sequence of bits generated in the middle of the KRVZ sampler X, it is easy to create a new
KRVZ sampler B of the same width that only generates Xi, via the following steps.

1. Copy the KRVZ sampler that creates X.

17Here, recall that Q⊗t refers to a sequence of t independent copies of Q.

229

2. Throw out all layers that do not produce bits corresponding to Xi.

3. Add a new start vertex vstart.

4. Connect vstart to the first layer remaining in B, using the appropriate probabilities.

5. Merge the first two layers of B, to deal with the fact that the edges leaving vstart currently have no
output labels.

Thus, we are guaranteed that for each Xi ∼ {0, 1}n and Qi ∼ {0, 1}n, it holds that |Xi −Qi| ≥ δ by the
theorem hypothesis that every KRVZ sampler of width w is far from Q. The question now is,

Is this enough to guarantee that the statistical distance blows up in Equation (9.13)?

Well, if each Xi were independent, it is not too hard to show that the answer is yes. However, this is of
course not guaranteed to be the case, since the Xi’s are consecutive slices of the same KRVZ sampler X.
Indeed, without further examination, it could potentially be the case that for any x ∈ {0, 1}n and i ∈ [n],
the distributions (X−i | Xi = x) and (Q⊗t−i) are identical.18 In this case, we cannot hope to lower bound
Equation (9.13) by anything more than δ. In some sense, the above adversarial example represents a situation
where each Xi is not contributing its “fair share” to the statistical distance in Equation (9.13). In order to
force each Xi to be a contributing member, we would like a different guarantee than just |Xi −Qi| ≥ δ.
One natural way to encode the idea that each Xi is contributing its fair share is to require that for every
i ∈ [t] and x ∈ ({0, 1}n)i−1,

|(Xi | X<i = x)− (Qi | Q<i = x)| ≥ δ. (9.14)

This leaves us with two questions:

(i) Given a guarantee like Equation (9.14), can we actually prove Equation (9.13)?

(ii) Is the guarantee given in Equation (9.14) even true?

If we can answer yes to both questions, we are done with our direct product theorem for KRVZ samplers.
It turns out that (i) is true, but it is a little cumbersome to do so using statistical distance. To avoid this,

we use simple and well known facts to convert the statement into one about squared Hellinger distance,
which can further be phrased in terms of the Bhattacharyya coefficient. Phrasing (i) in this way allows for a
simple inductive proof, which we can then convert back to a result about statistical distance.

It also turns out that (ii) is true. To see why, note that (Qi | Q<i = x) is just the same distribution as
Q ∼ {0, 1}n, since each Qi is an independent copy of Q. Furthermore, it is straightforward to show that
the distribution (Xi | X<i = x) can be generated by a width w KRVZ sampler, using a similar idea to the
one we presented for why Xi has this property. Thus the hypothesis of the direct product theorem implies
Equation (9.14), and our direct product theorem for KRVZ samplers is complete.

18Recall that for a random variable X = (X1, . . . ,Xt), the notation X−i denotes X with Xi removed.

230

A direct product theorem for sampling with ROBPs It is now easy to obtain a direct product theorem
for ROBP samplers, in a black-box manner, by combining the above direct product theorem with our equiv-
alence theorem between KRVZ samplers and ROBP samplers (Theorem 9.6). However, as discussed at the
beginning of this section, this will only yield a weak direct product theorem, since our equivalence theorem
suffers a slight loss in parameters (i.e., width). If we want to obtain a strong direct product theorem for
ROBP samplers, we must dig into the black box.

Looking back at the previous discussion, it is not too difficult to see that if one wants a strong direct
product theorem for ROBP samplers (that suffers no loss in width), then it suffices to show the following:
for any distribution X = (X1, . . . ,Xt) ∼ ({0, 1}n)t sampled by an ROBP of width w, and any i ∈ [t], x ∈
({0, 1}n)i−1, the distribution (Xi | X<i = x) can be sampled by an ROBP of width w.

In order to show the above, our key ingredient is the following: for any w and probability distribution
p : [w] → R≥0, we construct an ROBP of width w such that a random walk over it hits the ith vertex in the
last layer with probability p(i)+γ, where γ > 0 can be arbitrarily small. A first attempt at constructing such
an ROBP might use a multi-thresholding function, which sorts Boolean strings into buckets of various sizes
- similar to the one from our equivalence theorems (Section 9.3.3). However, recall that our construction of
such a function required width 2w (instead of the desired w), and we showed this was tight up to additive
constants (Lemma 9.6).

To get the width down to w, we start by showing that for any biased coin A ∼ {0, 1}, there is an ROBP
of width 2 that samples a distribution arbitrarily close to it. At a high level, this argument works as follows:
for any binary string b ∈ {0, 1}ℓ, we show how to use its bits as “instructions” to construct a certain ROBP
of length ℓ and width 2 in a layer-by-layer fashion. The constructed ROBP then guarantees that it accepts
a random string with probability b, where b is interpreted as the binary representation of a number in [0, 1].
Finally, it is not too hard to bootstrap such an object to create our desired ROBP of width w that hits the
vertices in its last layer with probabilities close to {p(i)}i∈[w]. As a result, we get our strong direct product
theorem for sampling with ROBPs.

A formal presentation of the proof

Now that we have a high-level idea of how our proof will work, we are ready to get started with its for-
malization. Towards the end, we start by proving a simple new lemma on amplifying statistical distance in
Section 9.6.1. Then, in Section 9.6.2, we show how this lemma can be combined with a basic fact about
KRVZ samplers to obtain a strong direct product theorem for KRVZ samplers. Finally, in Section 9.6.3, we
start by showing how this result can be combined with our KRVZ-ROBP equivalence theorem (Theorem 9.6)
to obtain a weak direct product theorem for sampling with ROBPs. Then, we show how to turn this into a
strong direct product theorem by employing some more involved tools, ultimately proving Theorem 9.20.

9.6.1 A simple lemma on amplifying statistical distance

As promised, let us begin with our simple new lemma on amplifying statistical distance, which is one of the
key ingredients in the proofs of our direct product theorems. In fact, in some sense, this simple lemma can
itself be viewed as a direct product theorem for sequences of somewhat-dependent random variables.

Lemma 9.9 (Lemma 9.1, restated). Let X ∼ V n and Y ∼ V n each be a sequence of n random variables
over V , where elements in the sequence need not be independent. Suppose that for any i ∈ [n] and v ∈ V i−1,

|(Xi | X<i = v)− (Yi | Y<i = v)| ≥ δ.

231

Then
|X−Y| ≥ 1− e−nδ2/2.

As it turns out, this lemma will be a little cumbersome to prove using statistical distance. Thus, we
will convert the statement into one about more amenable notions of distance. The first such measure we
consider is the squared Hellinger distance. Given two random variables X,Y over some discrete space V ,
the squared Hellinger distance between X,Y is denoted H2(X,Y) and defined as follows:

H2(X,Y) :=
1

2

∑
v∈V

(√
Pr[X = v]−

√
Y = v

)2
.

We would now like to express Lemma 9.9 using this more well-behaved notion of distance. For this,
we can use the following fact, which is well-known and straightforward to show using Cauchy-Schwarz. It
gives us estimates on statistical distance in terms of squared Hellinger distance.

Fact 9.4. For any discrete random variables X,Y ∼ V ,

H2(X,Y) ≤ |X−Y| ≤
√
2H(X,Y).

We now have the tools necessary to convert Lemma 9.9 into a statement about squared Hellinger dis-
tance. However, it turns out that there is another related measure of distance/similarity that will make
Lemma 9.9 even easier to prove. It is known as the Bhattacharyya coefficient. Given two random variables
X,Y over some discrete space V , the Bhattacharyya coefficient between X and Y is denoted BC(X,Y)
and defined as follows:

BC(X,Y) :=
∑
v∈V

√
Pr[X = v] · Pr[Y = v].

It is easy to verify, via the definitions of squared Hellinger distance and Bhattacharyya coefficient, that
1 − BC(X,Y) = H2(X,Y). We can combine this observation with Fact 9.4 to obtain the following
estimates on statistical distance in terms of the Bhattacharyya coefficient.

Fact 9.5. For any discrete random variables X,Y ∼ V ,

1− BC(X,Y) ≤ |X−Y| ≤
√
2
√

1− BC(X,Y).

The goal now is to prove a version of Lemma 9.9 that uses the Bhattacharyya coefficient. We can then
combine this result with Fact 9.5 to prove Lemma 9.9.

Lemma 9.10. Let X ∼ V n and Y ∼ V n each be a sequence of n random variables over V , where elements
in the sequence need not be independent. Suppose that for any i ∈ [n] and v ∈ V i−1,

BC((Xi | X<i = v), (Yi | Y<i = v)) ≤ δ.

Then
BC(X,Y) ≤ δn.

Proof. We prove the slightly stronger statement that for any i ∈ [n], it holds that BC(X≤i,Y≤i) ≤ δi. We
prove the result by induction on i. The base case i = 1 is immediate from the hypothesis. For the case i ≥ 2

232

we have

BC(X≤i,Y≤i) =
∑
v∈V i

√
Pr[X≤i = v] Pr[Y≤i = v]

=
∑

v∈V i−1

∑
b∈V

√
Pr[X<i = v] Pr[Xi = b | X<i = v] Pr[Y<i = v] Pr[Yi = b | Y<i = v]

=
∑

v∈V i−1

√
Pr[X<i = v] Pr[Y<i = v]

∑
b∈V

√
Pr[Xi = b | X<i = v] Pr[Yi = b | Y<i = v]

=
∑

v∈V i−1

√
Pr[X<i = v] Pr[Y<i = v] · BC((Xi | X<i = v), (Yi | Y<i = v))

≤ δ ·
∑

v∈V i−1

√
Pr[X<i = v] Pr[Y<i = v]

= δ · BC(X<i,Y<i)

≤ δ · δi−1

= δi,

where the inequalities use the lemma hypothesis and the induction hypothesis.

We now combine the above lemma with our estimates from Fact 9.5 to prove Lemma 9.9.

Proof of Lemma 9.9. By combining the lemma hypothesis with Fact 9.5, we know that for any i, v,

BC((Xi | X<i = v), (Yi | Y<i = v)) ≤ 1− |(Xi | X<i = v)− (Yi | Y<i = v)|2

2
≤ 1− δ2/2.

Thus by Lemma 9.10 we have

BC(X,Y) ≤ (1− δ2/2)n ≤ e−nδ2/2,

where we use the standard inequality 1 + x ≤ ex for all real x. Using Fact 9.5 once more we get

|X−Y| ≥ 1− BC(X,Y) ≥ 1− e−nδ2/2,

as desired.

9.6.2 A direct product theorem for KRVZ samplers

We now have everything we need in order to prove a strong direct product theorem for KRVZ samplers.

Theorem 9.21. Let Q ∼ {0, 1}n be a distribution such that for any KRVZ sampler X ∼ {0, 1}n of width
w, it holds that |X−Q| ≥ δ. Then for any KRVZ sampler X∗ ∼ {0, 1}nt of width w,

|X∗ −Q⊗t| ≥ 1− e−tδ2/2.

To prove this result, we will simply combine our lemma on amplifying statistical distance (Lemma 9.9)
with the following claim, which is straightforward to verify using the definition of KRVZ sampler.

233

Claim 9.1 (KRVZ samplers are closed under slicing and preconditioning). Let X ∼ {0, 1}n be a KRVZ
sampler of width w. Then for any 1 ≤ i ≤ j ≤ n and any x ∈ {0, 1}i−1, the distribution

(Xi→j | X<i = x)

is also a KRVZ sampler of width w.

It is now not too difficult to formally prove our strong direct product theorem for KRVZ samplers.

Proof of Theorem 9.21. Parse X∗ as (X1, . . . ,Xt) ∼ ({0, 1}n)t, and parse Q⊗t as (Q1, . . . ,Qt) ∼
({0, 1}n)t. By definition, each Qi is an independent copy of Q. And by Claim 9.1, we know that for
any fixing of X<i, the random variable Xi is a KRVZ sampler of width w. Thus for any i ∈ [t] and
v ∈ ({0, 1}n)i−1, we have

|(Xi | X<i = v)− (Qi | Q<i = v)| ≥ δ

by the hypothesis |X−Q| ≥ δ. Applying Lemma 9.9 completes the proof.

9.6.3 A direct product theorem for ROBP samplers

Finally, we are ready to prove our main direct product theorem, which we restate below for convenience.

Theorem 9.22 (Theorem 9.20, restated). Let Q ∼ {0, 1}n be a distribution such that for any ROBP F :
{0, 1}ℓ → {0, 1}n of width w, it holds that |F (Uℓ) − Q| ≥ δ. Then for any t ∈ N and ROBP F ∗ :
{0, 1}ℓ∗ → {0, 1}nt of width w, it holds that

|F ∗(Uℓ∗)−Q⊗t| ≥ 1− e−tδ2/4.

In order to prove this result, we would like to apply our KRVZ-ROBP equivalence theorem (Theo-
rem 9.6) with our direct product theorem from KRVZ samplers (Theorem 9.21). Such a proof would look
roughly as follows: first, if every ROBP F : {0, 1}ℓ → {0, 1}n of widthw has |F (Uℓ)−Q| ≥ δ, then by the
second bullet of Theorem 9.6, every KRVZ sampler X ∼ {0, 1}n of width w/7 has roughly |X −Q| ≥ δ.
Then, by Theorem 9.21, we know that every KRVZ sampler X∗ ∼ {0, 1}nt of width w/7 has roughly
|X∗−Q⊗t| ≥ 1− e−tδ2/4. Finally, by the first bullet of Theorem 9.6, every ROBP F : {0, 1}ℓ∗ → {0, 1}nt
of width w/14 must have |F ∗(Uℓ∗)−Q⊗t| ≥ 1− e−tδ2/4.

The above argument will give us statistical distance lower bounds of the form that we would like, but we
lose a factor of 14 in the width. We would like to avoid this, and keep the direct product theorem strong, in
the sense that the width need not decrease at all. Towards this end, the goal is to prove a version of Claim 9.1
for sampling using ROBPs. Just as in the proof of our direct product theorem for KRVZ samplers, we will
then be able to combine this result with our lemma on amplifying statistical distance from Section 9.6.1 in
order to prove Theorem 9.22. Thus, we proceed towards proving such a result, which will be significantly
more challenging to prove than Claim 9.1 (which was easy to verify by the definition of KRVZ sampler).

Claim 9.2 (ROBP samplers are closed under slicing and preconditioning). Let F ∗ : {0, 1}ℓ∗ → {0, 1}n be
an ROBP of width w, and define X := F ∗(Uℓ∗). For any 1 ≤ i ≤ j ≤ n and any x ∈ {0, 1}i−1, and
any ε > 0, the following holds. There exists an ROBP F : {0, 1}ℓ → {0, 1}j−i+1 of width w and length
ℓ = ℓ∗ + 3w log(w/ε) such that

|F (Uℓ)− (Xi→j | X<i = x)| ≤ ε.

234

A natural approach to prove Claim 9.2 is to build the ROBP F : {0, 1}ℓ → {0, 1}j−i+1 by taking the
appropriate slice of the ROBP F ∗ and simulating the conditioning X<i = x by prepending another ROBP.
The exact type of ROBP we would like to prepend should compute a function g : {0, 1}ℓ′ → [w] such that
g(Uℓ′) = α with roughly the same probability that F ∗ hits vertex α in layer i, conditioned on X<i = x.

To make things more formal, we will use a Σ-ROBP (Definition 9.2). In particular, we would like to
construct a Σ-ROBP of width w that computes the g described above. Towards this end, one idea is to define
g to compute a multi-thresholding function, which roughly splits the hypercube {0, 1}ℓ′ into w consecutive
buckets of an appropriate size, and on input x outputs the label of the bucket it falls into. Such a construction
can indeed be used to compute the appropriate probabilities, and we use this in Section 9.3.3 to prove the
equivalence between KRVZ and ROBP samplers. However, our Σ-ROBP from that section requires width
2w, and we show that this is tight (Lemma 9.6). To compute g using width w, we need a new idea. Before
presenting this new idea and proving Claim 9.2, let us show how it can be combined with our simple new
lemma on amplifying statistical distance (Lemma 9.9) to prove Theorem 9.22.

Proof of Theorem 9.22. Let X∗ = F ∗(Uℓ∗). Parse X∗ as (X1, . . . ,Xt) ∼ ({0, 1}n)t, and parse Q⊗t as
(Q1, . . . ,Qt) ∼ ({0, 1}n)t. Now, fix any i ∈ [t] and v ∈ ({0, 1}n)i−1. We want to get a lower bound on
|(Xi | X<i = v) − (Qi | Q<i = v)|. Towards this end, set ε := δ · (1 − 1/

√
2). By Claim 9.2, we know

that there exists an ROBP F : {0, 1}ℓ → {0, 1}n of width w and length ℓ = ℓ∗+3w log(
√
2w

(
√
2−1)δ) such that

|F (Uℓ)− (Xi | X<i = v)| ≤ δ · (1− 1/
√
2)

Furthermore, by the theorem hypothesis, we know that |F (Uℓ) −Qi| ≥ δ. Thus by the triangle inequality
we have |(Xi | X<i = v) −Qi| ≥ δ/

√
2. And since each Qi is an independent copy of Q, we of course

have Qi = (Qi | Q<i = v) and thus

|(Xi | X<i = v)− (Qi | Q<i = v)| ≥ δ/
√
2.

By applying Lemma 9.9, we immediately get that |X∗ −Q⊗t| ≥ 1 − e−tδ2/4, which completes the proof.
Note that we can actually make the constant 4 arbitrarily close to 2 by picking a small enough ε, since the
length ℓ = ℓ∗ + 3w log(w/ε) of the ROBP F does not matter.

Our goal now is to prove Claim 9.2. The new main ingredient we use is a Σ-ROBP that can achieve
roughly the same sampling task that is achieved by our Σ-ROBP for the multi-thresholding function from
Lemma 9.6, but using less width (while introducing a tiny amount of error). We prove the following.

Lemma 9.11 (Key ingredient for Theorem 9.22). For any distribution X ∼ [w] and ε > 0, there exists a
Σ-ROBP f : {0, 1}ℓ → [w] of width w and length ℓ = 3w log(w/ε) such that

|f(Uℓ)−X| ≤ ε.

This result says that any distribution over a support of size w can be sampled (with arbitrary precision)
by a Σ-ROBP of width w. In other words, this can be viewed as an ROBP version of Fact 9.1, which claims
the same result for simple samplers. Now, before we prove Lemma 9.11, let us see how it can be used to
show that ROBP samplers are closed under slicing and preconditioning (Claim 9.2).

Proof of Claim 9.2. Let F ∗ : {0, 1}ℓ∗ → {0, 1}n be an ROBP of width w, and define X := F ∗(Uℓ∗). Let
G = (V,E) be the graph underlying this ROBP with layers V = V0 ∪ V1 ∪ · · · ∪ Vℓ∗ . Let γ1 denote the

235

number of output bits labeling each edge into V1, let γ2 denote the number of output bits labeling each edge
into V2, and so on. Note that

∑
i∈[ℓ∗] γi = n.

Now, fix any 1 ≤ i ≤ j ≤ n and x ∈ {0, 1}i−1 and ε > 0. The claim is easy to show if i = 1, so
we henceforth assume i > 1. Recall that the goal is to construct an ROBP F such that |F (Uℓ) − (Xi→j |
X<i = x)| is small. Towards this end, let α ≤ β ∈ [ℓ∗] be such that the ith bit of X is outputted upon
entering layer Vα, and the jth bit of X is outputted upon entering layer Vβ . That is, α is the smallest integer
such that

∑
h∈[α] γh ≥ i and β is the smallest integer such that

∑
h∈[β] γh ≥ j.

We now construct a new branching programG′ = (V ′, E′) that will eventually help us construct F . The
layers of this new branching program are V ′ = V ′α−1 ∪ V ′α ∪ · · · ∪ V ′β , where each V ′i is a copy of Vi from
the original branching program G. The edge set E′ of the new branching program will include all the edges
from E that traverse between these layers (including their input and output labels), and nothing more.

We now perform a slight modification to the edges in E′. First, recall that by definition of each γh, we
have

∑
h∈[α−1] γh ≤ i − 1 <

∑
h∈[α] γh. Let r := (i − 1) −

∑
h∈[α−1] γh ≥ 0 denote the number of bits

on the edges into layer V ′α that will eventually by fixed by fixing X<i = x. Now, for each v ∈ V ′α−1, do
the following: consider its outgoing edges e0 and e1 with input labels 0 and 1, respectively. We will now
examine whether each of these edges have the property that the first r bits in their output label match the
last r bits of x. If neither of e0, e1 have this property, do nothing. If both of e0, e1 have this property, do
nothing. If e0 has this property but e1 does not, then delete e1 and replace it with a new copy of e0 (this
copy should connect the same vertices as e0, it should have the same output label as e0, but it should have
the input label 1). If e1 has this property but e0 does not, then delete e0 and replace it with a new copy of e1
(this copy should connect the same vertices as e1, it should have the same output label as e1, but it should
have the input label 0).

Our last modification to the edges of E′ will be as follows. First, let r′ :=
∑

h∈[β] γh − j. We will erase
the first r bits and last r′ bits output by G′. In particular, for every edge entering V ′α, delete the first r bits of
its output label. And for every edge entering V ′β , delete the last r′ bits of its output label.

Now, label the vertices in Vα−1 as v1, . . . , vw, and let v′1, . . . , v
′
w denote the corresponding vertices in

V ′α−1. Consider again the original ROBP G = (V,E). For each s ∈ [w], let ps denote the probability that
a (uniform) random walk from the start vertex of G hits vs, conditioned on the event that the first i − 1
bits output by the random walk exactly match x. Next, consider the new ROBP G′. For each s ∈ [w], let
Ys ∼ {0, 1}j−i+1 denote the distribution generated by taking a (uniform) random walk over G′, starting at
vertex v′s ∈ V ′α−1 and outputting the output labels seen along the way. It is now straightforward to verify∑

s∈[w]

ps ·Ys = (Xi→j | X<i = x).

We would now like to construct a new ROBP that (almost) generates the distribution
∑

s∈[w] ps · Ys.
First, let A ∼ [w] denote the random variable corresponding to the distribution {ps}s∈[w]. By Lemma 9.11,
there is a Σ-ROBP f : {0, 1}ℓ′ → [w] of width w and length ℓ′ = 3w log(w/ε) such that |f(Uℓ′)−A| ≤ ε.
For each s ∈ [w], let qs := Pr[f(Uℓ′) = s]. Now, let G′′ = (V ′′, E′′) denote its underlying graph, which
has layers V ′′ = V ′′0 ∪ V ′′1 ∪ · · · ∪ V ′′ℓ′ . Label the vertices in V ′′ℓ′ as u1, . . . , uw, so that a random walk on G′′

hits us with probability qs.
We are finally ready to construct the ROBP F : {0, 1}ℓ → {0, 1}j−i+1 advertised in the claim statement.

Its underlying graph GF = (VF , EF) is formed as follows: first, set VF = V ′′0 ∪ · · · ∪V ′′ℓ′ ∪V ′α−1∪ · · · ∪V ′β .
Then, set EF = E′′∪E′. Finally, merge layers Vℓ′′ and V ′α−1 by identifying each us ∈ Vℓ′′ with v′s ∈ V ′α−1.
It is straightforward to verify that F (Uℓ) =

∑
s∈[w] qs ·Ys. Furthermore, notice that F has width w and

length ℓ = ℓ′ + β − α+ 1 ≤ ℓ′ + ℓ∗ = 3w log(w/ε) + ℓ∗.

236

Thus, all that remains is to show |
∑

s∈[w] qs ·Ys−
∑

s∈[w] ps ·Ys| ≤ ε. Using the definition of statistical
distance, we have

|
∑
s

qsYs −
∑
s

psYs| = max
T⊆{0,1}j−i+1

(Pr[
∑
s

qsYs ∈ T]− Pr[
∑
s

psYs ∈ T])

= max
T

∑
s

Pr[Ys ∈ T] · (qs − ps)

≤ max
T

∑
s : qs−ps≥0

Pr[Ys ∈ T] · (qs − ps)

≤
∑

s : qs−ps≥0
(qs − ps)

= |f(Uℓ′)−A|
≤ ε,

as desired.

At last, all that remains is to prove our key ingredient, Lemma 9.11, which shows that any distribution
over a support of size w can be sampled with arbitrary precision by a Σ-ROBP of width w. We do so, below.

Proof of Lemma 9.11. We would like to show that for any distribution X ∼ [w] and ε > 0, there exists a
Σ-ROBP f : {0, 1}ℓ → [w] of width w and length ℓ = 3w log(w/ε) such that |f(Uℓ) −X| ≤ ε. Without
loss of generality, we assume that Pr[X = i] > 0 for each i ∈ [w]. Furthermore, suppose for now that for
any distribution Y ∼ {0, 1} and ε′ > 0, there exists an ROBP f ′ : {0, 1}ℓ′ → {0, 1} of width 2 and length
ℓ′ = ⌈log(1/ε′)⌉ such that |f ′(Uℓ′) −Y| ≤ ε′. We first show how this can be used to obtain the desired
result, and then we show how to construct such an ROBP.

From width 2 to width w Let us return to the original distribution X ∼ [w] that we would like to sample
with error ε. For each i ∈ [w − 1], define a random variable Ai ∼ {0, 1} as follows. We set Ai = 0 with
probability Pr[X = i | X ≥ i] and we set Ai = 1 with probability Pr[X > i | X ≥ i]. Observe that

Pr[X = i] =

{
Pr[Ai = 0] ·

∏
j<i Pr[Aj = 1] if i < w,

Pr[Ai−1 = 1] ·
∏
j<i−1 Pr[Aj = 1] if i = w.

(9.15)

Now, for every i ∈ [w−1], let f ′i : {0, 1}ℓ
′ → {0, 1} be an ROBP of width 2 and length ℓ′ = ⌈log(1/ε′)⌉

such that |f ′i(Uℓ′) −Ai| ≤ ε′. For convenience, we let Bi := f ′i(Uℓ′) so that |Ai − Bi| ≤ ε′. Now, let
Gi = (V i, Ei) denote the underlying graph of f ′i with layers V i = V i

0 ∪ · · · ∪ V i
ℓ′ . Let starti ∈ V i

0 denote
its start state, let accepti ∈ V i

ℓ′ denote its accept state, and let rejecti ∈ V i
ℓ′ denote its reject state.

The goal now is to combine these ROBPs into one large ROBP that computes f : {0, 1}ℓ → [w]. To do
so, we construct its underlying graph G = (V,E) as follows. First, we concatenate all of the above ROBPs
in a series configuration. That is, we set

V = (V 1
0 ∪ · · · ∪ V 1

ℓ′) ∪ (V 2
0 ∪ · · · ∪ V 2

ℓ′) ∪ · · · ∪ (V w−1
0 ∪ · · · ∪ V w−1

ℓ′). (9.16)

Next, we add all the edges
⋃
i∈[w−1]E

i to E. Then, for every i ∈ [w − 2], we draw two edges from
accepti to starti+1, and give them input labels 0, 1, respectively. Next, for every i ∈ [w − 2], we do the
following: for every layer W appearing (strictly) to the right of layer V i

ℓ′ in Equation (9.16), add a node

237

called bucketiW . Then, draw two edges (labeled 0 and 1) from rejecti to bucketiW , where W is the layer
immediately following V i

ℓ′ . Then, for any consecutive layers W,W ′ that contain nodes bucketiW , bucket
i
W ′ ,

draw two edges (labeled 0 and 1) from bucketiW to bucketiW ′ . Finally, for each i ∈ [w − 2], give the node
bucketi

V w−1
ℓ′

the output label i; give the node rejectw−1 the output label w− 1; and give the node acceptw−1

the output label w. This completes the construction of G = (V,E) and f : {0, 1}ℓ → [w].
Notice that the widest layer in G is V w−1

ℓ′ , and it has width 2 + (w − 2) = w. Thus, G has width w
and length ℓ = ℓ′ + (1 + ℓ′)(w − 2). In fact, notice we can contract the “trivial” edges between layers
V i
ℓ′ , V

i+1
0 for every i ∈ [w− 2], without changing the output distribution, thereby making the overall length

ℓ = ℓ′ · (w − 1) ≤ ℓ′ · w.
Now, set X′ = f(Uℓ) and observe via the above construction that

Pr[X′ = i] =

{
Pr[Bi = 0] ·

∏
j<i Pr[Bj = 1] if i < w,

Pr[Bi−1 = 1] ·
∏
j<i−1 Pr[Bj = 1] if i = w.

(9.17)

Our goal now is to upper bound |X′ −X| using Equations (9.15) and (9.17). Towards this end, suppose
we have a sequence of probabilities p1, . . . , pi and another sequence of probabilities q1, . . . , qi such that each
qj is at most pj + ε′. It is then straightforward to use a hybrid-type argument to verify that q1 · q2 · · · qi ≤
p1 · p2 · · · pi + i · ε′. Thus, recalling that each |Ai −Bi| ≤ ε′, we know by Equations (9.15) and (9.17) that
for every i ∈ [w],

Pr[X′ = i]− Pr[X = i] ≤ w · ε′.

Thus, we have

|X′ −X| = max
T⊆[w]

Pr[X′ ∈ T]− Pr[X ∈ T]

= max
T⊆[w]

∑
i∈T

(Pr[X′ = i]− Pr[X = i])

≤ max
T⊆[w]

∑
i∈T

wε′

≤ w2 · ε′.

Finally, we see that if we set ε′ = ε/w2, then we have a Σ-ROBP f : {0, 1}ℓ → [w] of width w and length
ℓ ≤ ℓ′ · w = ⌈log(1/ε′)⌉ · w = ⌈log(w2/ε)⌉ · w ≤ 3w log(w/ε) such that |f(Uℓ)−X| ≤ ε, as desired.19

Building a Σ-ROBP of width 2 All that remains is to show the claim we assumed at the beginning of this
proof. Namely, that for any distribution Y ∼ {0, 1} and ε′ > 0, there exists an ROBP f ′ : {0, 1}ℓ′ → {0, 1}
of width 2 and length ℓ′ = ⌈log(1/ε′)⌉ such that |f ′(Uℓ′)−Y| ≤ ε′.

To prove the above, we specify the underlying graph G′ = (V ′, E′) of f ′ as follows. The graph will
consist of layers V ′ = V ′0∪V ′1∪· · ·∪V ′ℓ′ , where each V ′i consists of vertices labeled ui, vi. We label u0 as the
start vertex, uℓ′ as the reject state (outputs 0), and vℓ′ as the accept state (outputs 1). Define p := Pr[Y = 0]
and assume without loss of generality that 0 < p < 1. Next, we specify the edges E′ of G′.

Let b ∈ {0, 1}ℓ′ denote a parameter that we will specify later. Using b, we construct the edges entering
each layer V ′i as follows. For every i ∈ [ℓ′], do the following: if bi = 0, draw two parallel edges of the form

19We remark that the w inside the log can be removed through a slightly more technical construction, where the ROBPs f ′
i ’s are

selected to take into account the errors made by the earlier f ′
i ’s.

238

(vi−1, vi) and give them input labels 0, 1; then, draw edges (ui−1, ui) with input label 0 and (ui−1, vi) with
input label 1. On the other hand, if bi = 1, then draw two parallel edges of the form (ui−1, ui) and give
them input labels 0, 1; then, draw edges (vi−1, vi) with input label 0 and (vi−1, ui) with input label 1.

Consider now a (uniform) random walk over G′, starting at the start vertex u0. For every i ∈ [ℓ′], let qi
denote the probability that this random walk hits vertex ui. Of course, the probability that the random walk
hits vi is then 1−qi. Define q0 = 1, and observe via our construction that the following holds for all i ∈ [ℓ′]:

qi =

{
1
2 · qi−1 if bi = 0,

qi−1 +
1
2 · (1− qi−1) =

1
2 · (qi−1 + 1) if bi = 1,

which can be expressed more concisely as

qi =
1

2
· (qi−1 + bi).

Recalling that q0 = 1, it is then straightforward to show via induction that for any i ∈ [ℓ′],

qi = 2−i +
∑
h∈[i]

bi+1−h · 2−h.

Since uℓ′ is the reject state, we have

Pr[f ′(Uℓ′) = 0] = qℓ′ = 2−ℓ
′
+
∑
h∈[ℓ′]

bℓ′+1−h · 2−h.

But observe that this quantity is simply a decimal written in binary using {b1, b2, . . . , bℓ′}. In particular,
if we consider any 0 < τ < 1 that can be written as τ = 2−ℓ

′ · K for some K ∈ N, then we can
always find some b ∈ {0, 1}ℓ′ such that the right hand side above evaluates to exactly τ . Now, recall that
p = Pr[Y = 0]. Pick the smallest K ∈ N such that 2−ℓ

′
K ≥ p > 0, and pick b ∈ {0, 1}ℓ′ such that

Pr[f ′(Uℓ′) = 0] = 2−ℓ
′
K. Then we must have

Pr[Y = 0] ≤ Pr[f ′(Uℓ′) = 0] < Pr[Y = 0] + 2−ℓ
′
.

In other words,

|f ′(Uℓ′)−Y| < 2−ℓ
′
. (9.18)

Finally, recall that the ROBP we constructed for f ′ had width 2, and thus we may set ℓ′ = ⌈log(1/ε′)⌉ to
upper bound Equation (9.18) by ε′ and complete the proof.

This fully completes our presentation, discussion, and proofs of not only our direct product theorems, but
all the main theorems in this chapter (Theorems 9.1 to 9.5). Next, we briefly discuss two bonus applications.

9.7 Applications in data structures

As discussed, one of the main reasons to study sampling lower bounds is that they are strictly harder to obtain
than classical lower bounds. Indeed, in Section 9.4.1 we demonstrated an explicit distribution that is easily
samplable by ROBPs, but whose corresponding function is hard to compute. Furthermore, in Section 9.3.3,
we showed that sampling lower bounds against ROBPs immediately yield computing lower bounds against
ROBPs, which hold even on average. Thus, a natural application of our sampling lower bounds produces a
rich host of computing lower bounds. However, in addition to this natural application of our sampling lower
bounds, we also obtain results in a much more surprising domain: data structure lower bounds.

239

9.7.1 Data structure lower bounds for storing codewords

In the seminal paper of Viola [Vio12a] that launched a systematic study into the complexity of sampling, he
observed that sampling lower bounds can in fact be used to obtain data structure lower bounds. Following his
work, both of the papers that establish sampling lower bounds against codes for AC0 circuits [LV12, BIL12]
use Viola’s observation to obtain data structure lower bounds against storing codewords (and retrieving
them using AC0 circuits). In this tradition, we combine our new sampling lower bounds (Theorem 9.16)
with Viola’s observation to get analogous data structure lower bounds in the context of ROBPs.

Corollary 9.4 (Data structure lower bounds). Let Q ⊆ {0, 1}n be a (ρ, L) list decodable code of dimension
k. Suppose that we can store the codewords of Q using only k + r bits so that a codeword can be computed
by an ROBP F : {0, 1}k+r → {0, 1}n of width w. Then

r ≥ ρ

1 + 2ρ
· k − log(wL)− 3.

We repeat the proof of Viola [Vio12a] with our new lower bounds, and using ROBPs instead of circuits.

Proof of Corollary 9.4. Suppose the codewords of Q can be stored in {0, 1}k+r bits of memory so that they
can be retrieved by some ROBP F : {0, 1}k+r → {0, 1}n of width w. Let Q be uniform over Q, and let
Uk+r be uniform over {0, 1}k+r, and observe that

|F (Uk+r)−Q| ≤ 1− 2−r

by a simple calculation using the definition of statistical distance. But by Theorem 9.16, we know that

1− 8wL · 2−
ρ

1+2ρ
k ≤ |F (Uk+r)−Q|.

Combining the bounds yields the result.

For (n, k, d) codes, we can use Fact 2.10 to specialize the above result to the following.

Corollary 9.5 (Corollary 9.1, restated). For any good code Q ⊆ {0, 1}n of dimension k, there is a constant
c > 0 such that if we can store codewords of Q using k + r bits so that a codeword can be computed by an
ROBP F : {0, 1}k+r → {0, 1}n of width at most 2cn, then we must have redundancy r ≥ ⌊cn⌋.

Thus for good codes, one must use r = Ω(n) bits of redundancy, even given an ROBP of width 2Ω(n).
Furthermore, as discussed in Section 9.2, it is straightforward to show this is tight (up to constant factors).

9.8 Applications in communication complexity

In the previous section, we saw one unexpected application arising from our first main theorem (Theo-
rem 9.4). In this section, we give an unexpected application arising from a key ingredient developed in the
proof of our second main theorem (Theorem 9.5). In particular, using our simple new lemma on amplifying
statistical distance (Section 9.6.1), we give a simple new proof of an interesting result of Göös and Watson
[GW20] that establishes lower bounds on the communication complexity of sampling disjoint sets.

240

9.8.1 A simple new proof of known lower bounds for sampling disjoint sets

As we have seen, almost all of the prior work on the complexity of sampling has focused on sampling with
AC0 circuits. In this chapter, we have primarily focused on sampling with read-once branching programs.
Now, we slightly switch gears and focus on sampling with two-party communication protocols, a subject
first considered in the works [AST+03, GW20]. To start, we give a formal description of how this is defined.

Sampling using two-party communication protocols We consider the following natural way to sample
distributions with two-party communication protocols, as put forth in [AST+03, GW20]. First, Alice and
Bob receive private randomness A and B, and no other input. Then, Alice and Bob take turns communicat-
ing bits to one another, until the protocol ends. We let Π(A,B) denote the sequence of bits communicated
(the transcript). At the end, Alice uses A and Π(A,B) to output some string X ∼ {0, 1}n, while Bob uses
B and Π(A,B) to output some string Y ∼ {0, 1}n. The distribution generated by the protocol is (X,Y).

A result of Göös and Watson One of the most classical problems in two-party communication complexity
is the disjointness problem, where Alice and Bob receive inputs x, y ∈ {0, 1}n, and they must figure out if
there is some i where xi = yi = 1. In a recent work [GW20], Göös and Watson study a natural sampling
version of this historical problem. In particular, they seek out lower bounds on the complexity of generating
disjoint strings using two-party communication protocols. More formally, they ask for the minimum number
of bits communicated by any two-party protocol that generates the distribution (S,T) ∼ {0, 1}n × {0, 1}n
that is uniform over all strings (s, t) ∈ {0, 1}n×{0, 1}n with s∧ t = 0n. Their main result is the following.

Theorem 9.23 (Sampling lower bounds for disjoint sets [GW20]). There is a universal constant c > 0 such
that for any distribution (X,Y) ∼ {0, 1}n×{0, 1}n sampled by a two-party protocol using at most cn bits
of communication,

|(X,Y)− (S,T)| ≥ 1− 2−cn.

Below, we provide a simple new proof, by applying our new lemma on amplifying statistical distance
(Lemma 9.9). We reminder the reader that this lemma has a simple, self-contained proof in Section 9.6.1.

An overview of the new proof

Our new proof of Theorem 9.23 will involve just five simple steps.

1. Observe that (X,Y) is a convex combination of 2b product distributions (X′,Y′) [AST+03].

2. Apply the data processing inequality (Fact 2.3) to observe that

|(X′,Y′)− (S,T)| ≥ |(X′1,Y′1, . . . ,X′n,Y′n)− (S1,T1, . . . ,Sn,Tn)|.

3. Using a straightforward calculation, observe that |(X′i,Y′i)−(Si,Ti)| ≥ Ω(1) for each i, since X′i,Y
′
i

are independent and (Si,Ti) is uniform over {(0, 0), (0, 1), (1, 0)}. Observe that this still holds even
if you condition on any fixing of the random variables earlier on in the sequence, since this doesn’t
break the independence of X′i,Y

′
i, nor does it change the distribution of (Si,Ti).

4. Use our new Lemma 9.9 on amplifying statistical distance to obtain |(X′,Y′)−(S,T)| ≥ 1−2−Ω(n).

5. Using the fact that the convex combination of a few far distributions is still far (Fact 2.5), conclude
that |(X,Y)− (S,T)| ≥ 1− 2b−Ω(n), which is 1− 2−Ω(n) for some b = Ω(n), as desired.

With this plan in mind, let us turn to the new, formal proof of Theorem 9.23.

241

A formal presentation of the new proof

New proof of Theorem 9.23. Suppose Alice and Bob have private randomness A and B, respectively, and
that they generate the distribution (X,Y) ∼ {0, 1}n × {0, 1}n using a protocol that exchanges b bits of
communication. A simple observation (made in [AST+03]) is that if we condition on any fixing of the
communication transcript Π(A,B), then X,Y become independent. In other words, (X,Y) is a convex
combination of≤ 2b distributions of the form (X′,Y′) ∼ {0, 1}n×{0, 1}n, where X′,Y′ are independent.

We now seek to lower bound each |(X′,Y′) − (S,T)|. Towards this end, define random variables
W = (W1, . . . ,Wn) and R = (R1, . . . ,Rn), where each Wi := (X′i,Y

′
i) and each Ri := (Si,Ti).

Since W simply permutes the bits of (X′,Y′), and R permutes the bits of (S,T) in the same way, we have
via the data processing inequality (Fact 2.3) that

|(X′,Y′)− (S,T)| ≥ |W −R| = |(W1,W2, . . . ,Wn)− (R1,R2, . . . ,Rn)|.

Now, consider any i ∈ [n], let v be in ({0, 1}2)i−1, and consider the random variables (Wi |W<i = v) and
(Ri | R<i = v). Notice that (Wi |W<i = v) is of the form ((X′i,Y

′
i) | (X′1,Y′1, . . . ,X′i−1,Y′i−1) = v).

Since X′,Y′ are independent, X′i,Y
′
i are independent, and fixing the first few bits of each random variable

doesn’t change this fact. Thus (Wi | W<i = v) is a random variable consisting of two independent bits.
Let p denote the probability that its first bit is 1, and q denote the probability that its second bit is 1.

On the other hand, since (S,T) is uniform over pairs (x, y) ∼ {0, 1}n × {0, 1}n of disjoint strings, it is
straightforward to verify that each Ri ∼ {0, 1}2 is an independent random variable that is uniform over the
strings {(0, 0), (0, 1), (1, 0)}. Thus, (Ri | R<i = v) is uniform over the same set of strings. Now that we
have specified the distributions of (Wi |W<i = v) and (Ri | R<i = v), it is a straightforward calculation
to verify that there is a universal constant δ > 0.1 such that no matter the values of p, q,

|(Wi |W<i = v)− (Ri | R<i = v)| ≥ δ.

Thus, applying our lemma on amplifying statistical distance (Lemma 9.9), we get

|(X′,Y′)− (S,T)| ≥ 1− e−nδ2/2.

To conclude, recall that (X,Y) is a convex combination of≤ 2b distributions of the form (X′,Y′), and thus
applying Fact 2.5 we get

|(X,Y)− (S,T)| ≥ 1− 2b · e−nδ2/2.

Thus, as long as Alice and Bob communicated b ≤ nδ2

4 log2 e = Ω(n) bits, we get statistical distance at

least 1− 2−
nδ2

4
log2 e = 1− 2−Ω(n), as desired.

9.9 Future directions

Recently, there have been a number of exciting works that study the complexity of sampling. In this new area
of complexity, one seeks to understand the power of classical computational models for the task of sampling
from distributions. In this chapter, we initiated a study of the complexity of sampling in limited space,
and proved the first nontrivial sampling lower bounds against oblivious read-once branching programs. The
overall study of the complexity of sampling is still a very new area, and many open questions remain. Below,
we outline three such questions on the complexity of sampling with limited memory.

242

Sampling lower bounds using limited randomness In this chapter, we demonstrated distributions that
cannot be sampled by ROBPs of limited width, given unlimited random bits as input. Can one demonstrate
sampling lower bounds for ROBPs against a richer class of distributions if the ROBP is only provided with
a limited number of random input bits (say, ℓ = poly(n))?

This question is especially interesting if one considers a more powerful model of multi-output ROBPs
whose output bits need not be layered (as in Definition 9.3). It can be shown that such ROBPs can come
arbitrarily close to sampling any distribution X ∼ {0, 1}n using just width 3. However, the most natural way
to construct such an ROBP requires ℓ ≫ |support(X)| bits of randomness, which could be exponentially
large in n. Thus, it would be interesting to understand the power of these ROBPs under the restriction
ℓ ≤ poly(n).

Sampling lower bounds for more general branching programs On the other hand, if we keep the output
bits layered, and the randomness unlimited, it is natural to ask if there exist more general types of branching
programs for which sampling lower bounds can be established.

One such generalization might be to unknown-order ROBPs [FK18], which are allowed to read their
input bits and write their output bits in any unknown order. As it turns out, many of our results can be
easily extended to this more general setting: For example, our results on sampling codes can be extended to
the unknown-order setting using the fact that distance is preserved under permutating coordinates, and our
sampling lower bounds against input-output pairs (Un, b(Un)) can be extended by replacing the two-source
extractor with an extractor for interleaved sources (e.g., like the one from [RY11]).

Perhaps a more interesting generalization would be to read-k branching programs, where the branching
program is allowed to read each input bit k times. It seems much more challenging to break the correlation
between the output bits of a read-k branching program - thus, establishing sampling lower bounds for this
more general setting would seem to require significantly new techniques.

A separation between sampling with ROBPs and AC0 circuits As we’ve seen, it is not too hard to
show that there exist simple distributions samplable by AC0 circuits that cannot be sampled by ROBPs, even
given exponential width. Can one find a distribution that cannot be sampled in AC0, but can be sampled by
ROBPs? This is possible if one can construct an extractor for AC0 sources, which can be computed by small
width ROBPs. In fact, even a disperser Disp : {0, 1}n → {0, 1} for min-entropy n− 1 would suffice, as this
would imply that both Disp−1(1) and Disp−1(0) can be generated in small space, yet one of these has min-
entropy n− 1 and thus cannot be generated in AC0 (by definition of a disperser). Since all known extractors
for AC0 sources (Chapter 8) also work for distributions that can be generated in small space (Chapter 7),
new extractors are needed.

243

244

Bibliography

[AA13] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. Theory
of Computing, 9(4):143–252, 2013. Preliminary version in STOC 2011.

[Aar14] Scott Aaronson. The equivalence of sampling and searching. Theory of Computing Systems,
55(2):281–298, 2014. Preliminary version in CSR 2011.

[AAV13] Dorit Aharonov, Itai Arad, and Thomas Vidick. Guest column: the quantum PCP conjecture.
ACM SIGACT News, 44(2):47–79, 2013.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[ABGSD21] Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. Fine-
grained hardness of CVP(P) – Everything that we can prove (and nothing else). In ACM-SIAM
Symposium on Discrete Algorithms (SODA 2021), pages 1816–1835. SIAM, 2021.

[ABN23] Anurag Anshu, Nikolas P Breuckmann, and Chinmay Nirkhe. NLTS hamiltonians from good
quantum codes. In 55th Annual ACM Symposium on Theory of Computing (STOC 2023),
pages 1090–1096, 2023.

[ACG+22] Omar Alrabiah, Eshan Chattopadhyay, Jesse Goodman, Xin Li, and João Ribeiro. Low-degree
polynomials extract from local sources. In 49th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2022), volume 229 of LIPIcs, pages 10:1–10:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[ACRT99] Alexander E Andreev, Andrea EF Clementi, José DP Rolim, and Luca Trevisan. Weak random
sources, hitting sets, and bpp simulations. SIAM Journal on Computing, 28(6):2103–2116,
1999. Preliminary version in FOCS 1997.

[ADN+19] Divesh Aggarwal, Ivan Damgård, Jesper Buus Nielsen, Maciej Obremski, Erick Purwanto,
Joao Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-malleable secret sharing
schemes for general access structures. In 39th Annual International Cryptology Conference
(CRYPTO 2019), pages 510–539. Springer, 2019.

[AGM03] Noga Alon, Oded Goldreich, and Yishay Mansour. Almost k-wise independence versus k-
wise independence. Information Processing Letters, 88(3):107–110, 2003.

[Ajt83] Miklós Ajtai. σ11-formulae on finite structures. Annals of pure and applied logic, 24(1):1–48,
1983.

245

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of mathematics,
pages 781–793, 2004.

[All89] Eric Allender. A note on the power of threshold circuits. In 30th Annual Symposium on
Foundations of Computer Science (FOCS 1989), pages 580–584. IEEE Computer Society,
1989.

[Alo86] Noga Alon. Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory. Com-
binatorica, 6(3):207–219, 1986.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 1(58):137–147, 1999. Pre-
liminary version in STOC 1996.

[And87] A. E. Andreev. On a method for obtaining more than quadratic effective lower bounds for the
complexity of π-schemes. Moscow Univ. Math. Bull., 42(1):63–66, 1987.

[AOR+20] Divesh Aggarwal, Maciej Obremski, Joao Ribeiro, Luisa Siniscalchi, and Ivan Visconti. How
to extract useful randomness from unreliable sources. In 39th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 2020),
pages 343–372. Springer, 2020.

[AS16] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.

[AST+03] Andris Ambainis, Leonard J Schulman, Amnon Ta-Shma, Umesh Vazirani, and Avi Wigder-
son. The quantum communication complexity of sampling. SIAM Journal on Computing,
32(6):1570–1585, 2003. Preliminary version in FOCS 1998.

[Bab87] László Babai. Random oracles separate pspace from the polynomial-time hierarchy. Infor-
mation Processing Letters, 26(1):51–53, 1987.

[BBR88] Charles H Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by pub-
lic discussion. SIAM Journal on Computing, 17(2):210–229, 1988. Preliminary version in
CRYPTO 1985.

[BC82] A Borodin and S Cook. A time-space tradeoff for sorting on a general sequential model of
computation. SIAM Journal on Computing, 11(2):287–297, 1982. Preliminary version in
STOC 1980.

[BCDT19] Avraham Ben-Aroya, Gil Cohen, Dean Doron, and Amnon Ta-Shma. Two-source con-
densers with low error and small entropy gap via entropy-resilient functions. In 23rd Interna-
tional Conference on Randomization and Computation (RANDOM 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

[BCS16] Itai Benjamini, Gil Cohen, and Igor Shinkar. Bi-lipschitz bijection between the boolean cube
and the hamming ball. Israel Journal of Mathematics, 212(2):677–703, 2016. Preliminary
version in FOCS 2014.

[BDF+22] Andrej Bogdanov, Krishnamoorthy Dinesh, Yuval Filmus, Yuval Ishai, Avi Kaplan, and Ak-
shayaram Srinivasan. Bounded indistinguishability for simple sources. In 13th Innovations in

246

Theoretical Computer Science Conference (ITCS 2022). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2022.

[BDIR21] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local leakage
resilience of linear secret sharing schemes. Journal of Cryptology, 34:1–65, 2021. Preliminary
version in CRYPTO 2018.

[BDL16] Jean Bourgain, Zeev Dvir, and Ethan Leeman. Affine extractors over large fields with expo-
nential error. computational complexity, 25:921–931, 2016.

[BDSGM23] Marshall Ball, Dana Dachman-Soled, Eli Goldin, and Saachi Mutreja. Extracting random-
ness from samplable distributions, revisited. In 64th Annual Symposium on Foundations of
Computer Science (FOCS 2023, to appear). IEEE, 2023.

[BDT19] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. An efficient reduction from two-
source to nonmalleable extractors: Achieving near-logarithmic min-entropy. SIAM Journal
on Computing, 51(2):STOC17–31, 2019. Preliminary version in STOC 2017.

[Bea91] Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM
Journal on Computing, 20(2):270–277, 1991. Preliminary version in STOC 1989.

[BEHL12] Ido Ben-Eliezer, Rani Hod, and Shachar Lovett. Random low-degree polynomials are hard
to approximate. computational complexity, 21(1):63–81, 2012. Preliminary version in RAN-
DOM 2009.

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In Coding and Cryptology: Third Interna-
tional Workshop (IWCC 2011), pages 11–46. Springer, 2011.

[BFK+81] Allan Borodin, Michael J Fischer, David G Kirkpatrick, Nancy A Lynch, and Martin Tompa.
A time-space tradeoff for sorting on non-oblivious machines. Journal of Computer and System
Sciences, 22(3):351–364, 1981. Preliminary version in FOCS 1979.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications. In 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pages
103–112, 1988.

[BFNV19] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani. On the complexity
and verification of quantum random circuit sampling. Nature Physics, 15(2):159–163, 2019.

[BG13] Andrej Bogdanov and Siyao Guo. Sparse extractor families for all the entropy. In 4th Con-
ference on Innovations in Theoretical Computer Science (ITCS 2013), pages 553–560, 2013.

[BGK06] Jean Bourgain, Alexey A Glibichuk, and Sergei Vladimirovich Konyagin. Estimates for the
number of sums and products and for exponential sums in fields of prime order. Journal of
the London Mathematical Society, 73(2):380–398, 2006.

[BGLZ15] Abhishek Bhowmick, Ariel Gabizon, Thái Hoang Lê, and David Zuckerman. Deterministic
extractors for additive sources. In 6th Conference on Innovations in Theoretical Computer
Science (ITCS 2015), pages 277–286, 2015.

247

[BGM22] Marshall Ball, Oded Goldreich, and Tal Malkin. Randomness extraction from somewhat
dependent sources. In 13th Innovations in Theoretical Computer Science Conference (ITCS
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[BIL12] Chris Beck, Russell Impagliazzo, and Shachar Lovett. Large deviation bounds for decision
trees and sampling lower bounds for ac0-circuits. In 53rd Annual Symposium on Foundations
of Computer Science (FOCS 2012)), pages 101–110. IEEE, 2012.

[BIW06] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using few
independent sources. SIAM Journal on Computing, 36(4):1095–1118, 2006. Preliminary
version in FOCS 2004.

[BJS01] Paul Beame, Thathachar S Jayram, and Michael Saks. Time–space tradeoffs for branching
programs. Journal of Computer and System Sciences, 63(4):542–572, 2001.

[BKS+10] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simulating
independence: New constructions of condensers, Ramsey graphs, dispersers, and extractors.
Journal of the ACM (JACM), 57(4):1–52, 2010. Preliminary version in STOC 2005.

[BL73] Jacques Bernard and Gérard Letac. Construction d’evenements equiprobables et coefficients
multinomiaux modulo pn. Illinois Journal of Mathematics, 17(2):317–332, 1973.

[BL85] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and min-
ima of banzhaf values. In 26th Annual Symposium on Foundations of Computer Science
(FOCS 1985), pages 408–416. IEEE, 1985.

[BL87] Ravi B Boppana and Jeffrey C Lagarias. One-way functions and circuit complexity. Informa-
tion and Computation, 74(3):226–240, 1987. Preliminary version in CCC 1986.

[Bla79] George Robert Blakley. Safeguarding cryptographic keys. In International Workshop on
Managing Requirements Knowledge, pages 313–313. IEEE, 1979.

[Blu86] Manuel Blum. Independent unbiased coin flips from a correlated biased source—a finite state
markov chain. Combinatorica, 6:97–108, 1986. Preliminary version in FOCS 1884.

[BNS92] László Babai, Noam Nisant, and Márió Szegedy. Multiparty protocols, pseudorandom gen-
erators for logspace, and time-space trade-offs. Journal of Computer and System Sciences,
45(2):204–232, 1992. Preliminary version in STOC 1989.

[BO83] Michael Ben-Or. Another advantage of free choice: completely asynchronous agreement
protocols. In 2nd Annual Symposium on Principles of Distributed Computing (PODC 1983),
pages 27–30. ACM, 1983.

[BOPV06] Michael Ben-Or, Elan Pavlov, and Vinod Vaikuntanathan. Byzantine agreement in the full-
information model in O(log n) rounds. In 38th Annual Symposium on Theory of Computing
(STOC 2006), pages 179–186. ACM, 2006.

[Bou05] Jean Bourgain. More on the sum-product phenomenon in prime fields and its applications.
International Journal of Number Theory, 1(01):1–32, 2005.

248

[Bou07] Jean Bourgain. On the construction of affine extractors. GAFA Geometric And Functional
Analysis, 17(1):33–57, 2007.

[Boy77] Phelim P Boyle. Options: A Monte Carlo approach. Journal of financial economics, 4(3):323–
338, 1977.

[BPS07] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász–Schrijver
systems and beyond follow from multiparty communication complexity. SIAM Journal on
Computing, 37(3):845–869, 2007. Preliminary version in ICALP 2005.

[Bra84] Gabriel Bracha. An asynchronous ⌊(n − 1)/3⌋-resilient consensus protocol. In 3rd Annual
Symposium on Principles of Distributed Computing (PODC 1984), pages 154–162. ACM,
1984.

[Bra08] Mark Braverman. Polylogarithmic independence fools ac 0 circuits. Journal of the ACM
(JACM), 57(5):1–10, 2008.

[BRC60] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error correcting binary
group codes. Information and control, 3(1):68–79, 1960.

[BRS93] Allan Borodin, Alexander Razborov, and Roman Smolensky. On lower bounds for read-k-
times branching programs. Computational Complexity, 3:1–18, 1993.

[BRSW12] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2-source dispersers for no(1)

entropy, and Ramsey graphs beating the Frankl-Wilson construction. Annals of Mathematics,
pages 1483–1543, 2012. Preliminary version in STOC 2006.

[BS00] Jürgen Bierbrauer and Holger Schellwat. Almost independent and weakly biased arrays:
efficient constructions and cryptologic applications. In 20th Annual International Cryptology
Conference (CRYPTO 2000), pages 533–543. Springer, 2000.

[BSG12] Eli Ben-Sasson and Ariel Gabizon. Extractors for polynomials sources over constant-size
fields of small characteristic. In 16th International Conference on Randomization and Com-
putation (RANDOM 2012), pages 399–410. Springer, 2012.

[BSHR+01] Eli Ben-Sasson, Shlomo Hoory, Eyal Rozenman, Salil Vadhan, and Avi Wigderson. Extrac-
tors for affine sources. Unpublished manuscript, 2001.

[BSK12] Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polynomials. SIAM
Journal on Computing, 41(4):880–914, 2012. Preliminary version in STOC 2009.

[BSRZ15] Eli Ben-Sasson and Noga Ron-Zewi. From affine to two-source extractors via approximate
duality. SIAM Journal on Computing, 44(6):1670–1697, 2015. Preliminary version in STOC
2011.

[BT94] Richard Beigel and Jun Tarui. On ACC. Computational Complexity, 4:350–366, 1994. Pre-
liminary version in FOCS 1991.

[BT13] John C Baez and David Tweed. Monte Carlo methods in climate science. Math Horizons,
21(2):5–8, 2013.

249

[CC85] Benny Chor and Brian A Coan. A simple and efficient randomized Byzantine Agreement
algorithm. IEEE Transactions on Software Engineering, SE-11(6):531–539, 1985.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In International Conference on the The-
ory and Application of Cryptographic Techniques (EUROCRYPT 2000), pages 453–469.
Springer, 2000.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In 21st Annual Inter-
national Cryptology Conference (CRYPTO 2001), pages 19–40. Springer, 2001.

[CFG+85] Benny Chor, Joel Friedman, Oded Goldreich, Johan Håstad, Steven Rudich, and Roman
Smolensky. The bit extraction problem or t-resilient functions. In 26th Annual Symposium
on Foundations of Computer Science (FOCS 1985), pages 396–407. IEEE, 1985.

[CFL83] Ashok K Chandra, Merrick L Furst, and Richard J Lipton. Multi-party protocols. In 15th
Annual ACM Symposium on Theory of Computing (STOC 1983), pages 94–99, 1983.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.
Preliminary version in FOCS 1985.

[CG17] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. Journal of Cryptology, 30:191–241, 2017.

[CG21] Eshan Chattopadhyay and Jesse Goodman. Improved extractors for small-space sources. In
62nd Annual Symposium on Foundations of Computer Science (FOCS 2021), pages 610–621.
IEEE, 2021.

[CGG+20] Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, Ashutosh Kumar, Xin Li, Raghu Meka,
and David Zuckerman. Extractors and secret sharing against bounded collusion protocols.
In 61st Annual Symposium on Foundations of Computer Science (FOCS 2020), pages 1226–
1242. IEEE, 2020.

[CGGL20] Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, and Xin Li. Extractors for adversar-
ial sources via extremal hypergraphs. In 52nd Annual Symposium on Theory of Computing
(STOC 2020), pages 1184–1197. ACM, 2020.

[CGL20] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Nonmalleable extractors and codes, with their
many tampered extensions. SIAM Journal on Computing, 49(5):999–1040, 2020. Preliminary
version in STOC 2016.

[CGL21] Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. Affine extractors for almost log-
arithmic entropy. In 62nd Annual Symposium on Foundations of Computer Science (FOCS
2021), pages 622–633. IEEE, 2021.

[CGP+15] J Carlson, Stefano Gandolfi, Francesco Pederiva, Steven C Pieper, Rocco Schiavilla,
KE Schmidt, and Robert B Wiringa. Quantum Monte Carlo methods for nuclear physics.
Reviews of Modern Physics, 87(3):1067, 2015.

250

[CGZ22] Eshan Chattopadhyay, Jesse Goodman, and David Zuckerman. The space complexity of
sampling. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022),
volume 215 of LIPIcs, pages 40:1–40:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

[Cha20] Eshan Chattopadhyay. Guest Column: A recipe for constructing two-source extractors.
SIGACT News, 51(2):38–57, June 2020.

[CL16a] Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source extractors,
and almost optimal privacy amplification protocols. In 57th Annual Symposium on Founda-
tions of Computer Science (FOCS 2016), pages 158–167. IEEE, 2016.

[CL16b] Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In 48th Annual ACM Sym-
posium on Theory of Computing (STOC 2016), pages 299–311, 2016.

[CL18] Kuan Cheng and Xin Li. Randomness extraction in AC0 and with small locality. 22nd
International Conference on Randomization and Computation (RANDOM 2018), 2018.

[CL20] Eshan Chattopadhyay and Xin Li. Non-malleable codes, extractors and secret sharing for
interleaved tampering and composition of tampering. In Theory of Cryptography: 18th Inter-
national Conference (TCC 2020), pages 584–613. Springer, 2020.

[CL22] Eshan Chattopadhyay and Jyun-Jie Liao. Extractors for sum of two sources. In 54th Annual
ACM Symposium on Theory of Computing (STOC 2022), pages 1584–1597, 2022.

[CLP17] Ernie Croot, Vsevolod F Lev, and Péter Pál Pach. Progression-free sets in are exponentially
small. Annals of Mathematics, pages 331–337, 2017.

[Coh16a] Gil Cohen. Local correlation breakers and applications to three-source extractors and mergers.
SIAM Journal on Computing, 45(4):1297–1338, 2016. Preliminary version in FOCS 2015.

[Coh16b] Gil Cohen. Making the most of advice: New correlation breakers and their applications. In
57th Annual Symposium on Foundations of Computer Science (FOCS 2016), pages 188–196.
IEEE, 2016.

[Coh17] Gil Cohen. Towards optimal two-source extractors and Ramsey graphs. In 49th Annual ACM
Symposium on Theory of Computing (STOC 2017), pages 1157–1170, 2017.

[Coh19] Gil Cohen. Two-source dispersers for polylogarithmic entropy and improved Ramsey graphs.
SIAM Journal on Computing, 50(3):STOC16–30, 2019. Preliminary version in STOC 2016.

[CRVW02] Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. Randomness conduc-
tors and constant-degree lossless expanders. In 34th Annual ACM Symposium on Theory of
Computing (STOC 2002), pages 659–668, 2002.

[CS16a] Gil Cohen and Leonard J Schulman. Extractors for near logarithmic min-entropy. In 57th An-
nual Symposium on Foundations of Computer Science (FOCS 2016), pages 178–187. IEEE,
2016.

[CS16b] Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In 7th Conference on
Innovations in Theoretical Computer Science (ITCS 2016), pages 47–58, 2016.

251

[CT15] Gil Cohen and Avishay Tal. Two structural results for low degree polynomials and appli-
cations. In 19th International Conference on Randomization and Computation (RANDOM
2015). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[CW89] Aviad Cohen and Avi Wigderson. Dispersers, deterministic amplification, and weak random
sources. In 30th Annual Symposium on Foundations of Computer Science (FOCS 1989), pages
14–19. IEEE, 1989.

[CZ16] Eshan Chattopadhyay and David Zuckerman. New extractors for interleaved sources. In 31st
Conference on Computational Complexity (CCC 2016). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[CZ18] Xue Chen and David Zuckerman. Existence of simple extractors. In Electron. Colloquium
Comput. Complex., volume 25, page 116, 2018.

[CZ19] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient
functions. Annals of Mathematics, 189(3):653–705, 2019. Preliminary version in STOC
2016.

[DDV10] Francesco Davı̀, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient storage. In
Security and Cryptography for Networks: 7th International Conference (SCN 2010), pages
121–137. Springer, 2010.

[DF92] Danny Dolev and Tomás Feder. Determinism vs. nondeterminism in multiparty communica-
tion complexity. SIAM Journal on Computing, 21(5):889–895, 1992. Preliminary version in
FOCS 1989.

[DG10] Matt DeVos and Ariel Gabizon. Simple affine extractors using dimension expansion. In IEEE
25th Annual Conference on Computational Complexity (CCC 2010), pages 50–57. IEEE,
2010.

[DGW09] Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank extractors for polynomial
sources. Computational Complexity, 18:1–58, 2009. Preliminary version in FOCS 2007.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM (JACM), 54(3):12–es,
2007.

[DK11] Evgeny Demenkov and Alexander Kulikov. An elementary proof of a 3n− o(n) lower bound
on the circuit complexity of affine dispersers. In International Symposium on Mathematical
Foundations of Computer Science, pages 256–265. Springer, 2011.

[DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the method
of multiplicities, with applications to kakeya sets and mergers. SIAM Journal on Computing,
42(6):2305–2328, 2013. Preliminary version in FOCS 2009.

[DL12] Zeev Dvir and Shachar Lovett. Subspace evasive sets. In 44th Annual ACM Symposium on
Theory of Computing (STOC 2012), pages 351–358, 2012.

[DMOZ22] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal pseudo-
randomness from hardness. Journal of the ACM, 69(6):1–55, 2022. Preliminary version in
FOCS 2020.

252

[Dod00] Yevgeniy Dodis. Exposure-Resilient Cryptography. PhD thesis, Massachusetts Institute of
Technology, 2000.

[Dod06] Yevgeniy Dodis. Fault-tolerant leader election and collective coin-flipping in the full infor-
mation model, 2006.

[DOPS04] Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the (im) possibility
of cryptography with imperfect randomness. In 45th Annual Symposium on Foundations of
Computer Science (FOCS 2004), pages 196–205. IEEE, 2004.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008. Preliminary version in EUROCRYPT 2004.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2007), pages 227–237. IEEE,
2007.

[Dvi12] Zeev Dvir. Extractors for varieties. Computational complexity, 21:515–572, 2012. Prelimi-
nary version in CCC 2009.

[DW11] Zeev Dvir and Avi Wigderson. Kakeya sets, new mergers, and old extractors. SIAM Journal
on Computing, 40(3):778–792, 2011. Preliminary version in FOCS 2008.

[DW12] Anindya De and Thomas Watson. Extractors and lower bounds for locally samplable sources.
ACM Transactions on Computation Theory (TOCT), 4(1):1–21, 2012. Preliminary version in
RANDOM 2011.

[Dwa72] Meyer Dwass. Unbiased coin tossing with discrete random variables. The Annals of Mathe-
matical Statistics, 43(3):860–864, 1972.

[DY21] Yevgeniy Dodis and Kevin Yeo. Doubly-affine extractors, and their applications. In 2nd
Conference on Information-Theoretic Cryptography (ITC 2021), 2021.

[EG17] Jordan S Ellenberg and Dion Gijswijt. On large subsets of with no three-term arithmetic
progression. Annals of Mathematics, pages 339–343, 2017.

[Eli72] Peter Elias. The efficient construction of an unbiased random sequence. The Annals of Math-
ematical Statistics, 43(3):865–870, 1972.

[Ema08] Viola Emanuele. Norms, XOR lemmas, and lower bounds for polynomials and protocols.
Theory of Computing, 4(1):137–168, 2008. Preliminary version in CCC 2007.

[Eus13] Alexander Eustis. Hypergraph independence numbers. PhD thesis, University of California,
San Diego, 2013.

[EV13] Alex Eustis and Jacques Verstraëte. On the independence number of steiner systems. Combi-
natorics, Probability and Computing, 22(2):241–252, 2013.

[FG13] Jeff Ford and Anna Gál. Hadamard tensors and lower bounds on multiparty communication
complexity. computational complexity, 22:595–622, 2013. Preliminary version in ICALP
2005.

253

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward Hirsch, and Alexander S Kulikov. A
better-than-3n lower bound for the circuit complexity of an explicit function. In 57th Annual
Symposium on Foundations of Computer Science (FOCS 2016), pages 89–98. IEEE, 2016.

[FK18] Michael A Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In 59th Annual Symposium on Foundations of Computer Science
(FOCS 2018), pages 946–955. IEEE, 2018.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985. Pre-
liminary version in PODS 1983.

[FLRS23] Yuval Filmus, Itai Leigh, Artur Riazanov, and Dmitry Sokolov. Sampling and certifying
symmetric functions. 27th International Conference on Randomization and Computation
(RANDOM 2023), 2023.

[FLW92] Alan M Ferrenberg, DP Landau, and Y Joanna Wong. Monte Carlo simulations: Hidden
errors from “good” random number generators. Physical Review Letters, 69(23):3382, 1992.

[Fri92] Joel Friedman. On the bit extraction problem. In 33rd Annual Symposium on Foundations of
Computer Science (FOCS 1992), pages 314–314. IEEE, 1992.

[FSS84] Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical systems theory, 17(1):13–27, 1984. Preliminary version in FOCS
1981.

[GB10] Venkatesan Guruswami and Eric Blais. Notes 6: Reed–Solomon, BCH, Reed–Muller, and
concatenated codes. Introduction to Coding Theory CMU: Spring, 2010.

[GGJS11] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing people of different be-
liefs together to do UC. In Theory of Cryptography: 8th Theory of Cryptography Conference
(TCC 2011), pages 311–328. Springer, 2011.

[GGN10] Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation of huge
random objects. SIAM Journal on Computing, 39(7):2761–2822, 2010. Preliminary version
in FOCS 2003.

[Gil52] Edgar N Gilbert. A comparison of signalling alphabets. The Bell system technical journal,
31(3):504–522, 1952.

[GK08] Vipul Goyal and Jonathan Katz. Universally composable multi-party computation with an
unreliable common reference string. In Theory of Cryptography Conference, pages 142–154.
Springer, 2008.

[GK16] Alexander Golovnev and Alexander Kulikov. Weighted gate elimination: Boolean dispersers
for quadratic varieties imply improved circuit lower bounds. In 7th Conference on Innovations
in Theoretical Computer Science (ITCS 2016), pages 405–411, 2016.

[GK18a] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In 50th Annual ACM Sym-
posium on Theory of Computing (STOC 2018), pages 685–698, 2018.

254

[GK18b] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general access struc-
tures. In 38th Annual International Cryptology Conference (CRYPTO 2018), pages 501–530.
Springer, 2018.

[GKW21] Alexander Golovnev, Alexander Kulikov, and Ryan Williams. Circuit depth reductions.
In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[GLW22] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range avoidance for low-depth circuits
and connections to pseudorandomness. In 26th International Conference on Randomization
and Computation (RANDOM 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[GO14] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. Journal of cryp-
tology, 27(3):506–543, 2014.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge University Press, 2001.

[GPR95] David Grable, Kevin Phelps, and Vojtěch Rödl. The minimum independence number for
designs. Combinatorica, 15:175–185, 1995.

[GR08] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields.
Combinatorica, 28(4):415–440, 2008. Preliminary version in FOCS 2005.

[GRS06] Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for bit-fixing sources
by obtaining an independent seed. SIAM Journal on Computing, 36(4):1072–1094, 2006.
Preliminary version in FOCS 2004.

[GRS22] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding the-
ory. Draft available at https://cse.buffalo.edu/faculty/atri/courses/
coding-theory/book/, 2022.

[GRT18] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for
learning. In 50th Annual ACM Symposium on Theory of Computing (STOC 2018), pages
990–1002, 2018.

[GSV05] Shafi Goldwasser, Madhu Sudan, and Vinod Vaikuntanathan. Distributed computing with im-
perfect randomness. In Distributed Computing: 19th International Conference (DISC 2005),
pages 288–302. Springer, 2005.

[GSZ21] Vipul Goyal, Akshayaram Srinivasan, and Chenzhi Zhu. Multi-source non-malleable extrac-
tors and applications. In 40th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques (EUROCRYPT 2021), pages 468–497. Springer, 2021.

[Gur04] Venkatesan Guruswami. Better extractors for better codes? In 36th annual ACM Symposium
on Theory of Computing (STOC 2004), pages 436–444, 2004.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and
randomness extractors from parvaresh–vardy codes. Journal of the ACM (JACM), 56(4):1–34,
2009. Preliminary version in CCC 2007.

255

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/

[GVJZ23] Zeyu Guo, Ben Lee Volk, Akhil Jalan, and David Zuckerman. Extractors for images of
varieties. In 55th Annual ACM Symposium on Theory of Computing (STOC 2023), 2023.

[GVW15] Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extraction in AC0.
In 30th Conference on Computational Complexity (CCC 2015). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2015.

[GW96] Ian Goldberg and David Wagner. Randomness and the Netscape browser. Dr Dobb’s Journal-
Software Tools for the Professional Programmer, 21(1):66–71, 1996.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties:
a quality-size trade-off for hashing. Random Structures & Algorithms, 1997. Preliminary
version in STOC 1994.

[GW20] Mika Göös and Thomas Watson. A lower bound for sampling disjoint sets. ACM Transactions
on Computation Theory (TOCT), 12(3):1–13, 2020. Preliminary version in RANDOM 2019.

[Ham50] Richard W Hamming. Error detecting and error correcting codes. The Bell system technical
journal, 29(2):147–160, 1950.

[Hås86] Johan Håstad. Almost optimal lower bounds for small depth circuits. In 18th Annual ACM
Symposium on Theory of Computing (STOC 1986), pages 6–20, 1986.

[HG91] Johan Håstad and Mikael Goldmann. On the power of small-depth threshold circuits. Com-
putational Complexity, 1:113–129, 1991. Preliminary version in FOCS 1990.

[HG17] Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. Quantum random number gener-
ators. Reviews of Modern Physics, 89(1):015004, 2017.

[HH64] J. M. Hammersley and D.C. Handscomb. Monte Carlo methods. Methuen, 1964.

[HHTT23] Pooya Hatami, William M Hoza, Avishay Tal, and Roei Tell. Depth-d threshold circuits vs.
depth-(d + 1) AND-OR trees. In 55th Annual ACM Symposium on Theory of Computing
(STOC 2023), pages 895–904, 2023.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
Preliminary version in STOC 1989.

[HIV22] Xuangui Huang, Peter Ivanov, and Emanuele Viola. Affine extractors andAC0-parity. In 26th
International Conference on Randomization and Computation (RANDOM 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

[Hoc59] Alexis Hocquenghem. Codes correcteurs d’erreurs. Chiffers, 2:147–156, 1959.

[HR15] Pavel Hrubes and Anup Rao. Circuits with medium fan-in. In 30th Conference on Computa-
tional Complexity (CCC 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

256

[HS70] Wassily Hoeffding and Gordon Simons. Unbiased coin tossing with a biased coin. The Annals
of Mathematical Statistics, pages 341–352, 1970.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as
subset sum. Journal of cryptology, 9(4):199–216, 1996. Preliminary version in FOCS 1989.

[IRW94] Russell Impagliazzo, Ran Raz, and Avi Wigderson. A direct product theorem. In 9th Annual
Conference on Structure in Complexity Theory (CCC 1994), pages 88–96. IEEE, 1994.

[ISW00] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Extractors and pseudo-random gen-
erators with optimal seed length. In 32nd Annual ACM Symposium on Theory of Computing
(STOC 2000), pages 1–10, 2000.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In 29th Annual ACM Symposium on Theory of Computing (STOC
1997), pages 220–229, 1997.

[Jai15] Rahul Jain. New strong direct product results in communication complexity. Journal of the
ACM (JACM), 62(3):1–27, 2015.

[JK99] Benjamin Jun and Paul Kocher. The Intel random number generator. Cryptography Research
Inc. White Paper, 27:1–8, 1999.

[JSWZ13] Rahul Jain, Yaoyun Shi, Zhaohui Wei, and Shengyu Zhang. Efficient protocols for generat-
ing bipartite classical distributions and quantum states. IEEE Transactions on Information
Theory, 59(8):5171–5178, 2013. Preliminary version in SODA 2013.

[JVV86] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical computer science, 43:169–188, 1986.
Preliminary version in ICALP 1985.

[KJS01] Kaoru Kurosawa, Thomas Johansson, and Douglas R Stinson. Almost k-wise independent
sample spaces and their cryptologic applications. Journal of Cryptology, 14:231–253, 2001.
Preliminary version in EUROCRYPT 1997.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions. In
29th Annual Symposium on Foundations of Computer Science (FOCS 1988), pages 68–80.
IEEE, 1988.

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou. Total func-
tions in the polynomial hierarchy. In 12th Innovations in Theoretical Computer Science Con-
ference (ITCS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press, 2020.

[Kla10] Hartmut Klauck. A strong direct product theorem for disjointness. In 42nd ACM Symposium
on Theory of Computing (STOC 2010), pages 77–86, 2010.

[KLR09] Yael Tauman Kalai, Xin Li, and Anup Rao. 2-source extractors under computational as-
sumptions and cryptography with defective randomness. In 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2009), pages 617–626. IEEE, 2009.

257

[KLRZ08] Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman. Network extractor protocols.
In 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pages
654–663. IEEE, 2008.

[KM04] Robert König and Ueli Maurer. Extracting randomness from generalized symbol-fixing and
markov sources. In International Symposium on Information Theory (ISIT 2004), page 232.
IEEE, 2004.

[KM05] Robert König and Ueli Maurer. Generalized strong extractors and deterministic privacy ampli-
fication. In Cryptography and Coding: 10th IMA International Conference, pages 322–339.
Springer, 2005.

[KMS19] Ashutosh Kumar, Raghu Meka, and Amit Sahai. Leakage-resilient secret sharing against
colluding parties. In 60th Annual Symposium on Foundations of Computer Science (FOCS
2019), pages 636–660. IEEE, 2019.

[KMV14] Alexandr Kostochka, Dhruv Mubayi, and Jacques Verstraëte. On independent sets in hyper-
graphs. Random Structures & Algorithms, 44(2):224–239, 2014.

[KN96] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1996.

[Kor21] Oliver Korten. The hardest explicit construction. In 62nd Annual Symposium on Foundations
of Computer Science (FOCS 2021), pages 433–444. IEEE, 2021.

[KR19] Yael Tauman Kalai and Leonid Reyzin. A Survey of Leakage-Resilient Cryptography, page
727–794. Association for Computing Machinery, New York, NY, USA, 2019.

[KRVZ11] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic extractors for
small-space sources. Journal of Computer and System Sciences, 77(1):191–220, 2011. Pre-
liminary version in STOC 2006.

[KS21] Dakshita Khurana and Akshayaram Srinivasan. Improved computational extractors and their
applications. In 41st Annual International Cryptology Conference (CRYPTO 2021), pages
566–594. Springer, 2021.

[KVMS12] Jeff Kinne, Dieter Van Melkebeek, and Ronen Shaltiel. Pseudorandom generators, typically-
correct derandomization, and circuit lower bounds. Computational complexity, 21:3–61,
2012. Preliminary version in RANDOM 2009.

[KZ07] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM Journal on Computing, 36(5):1231–1247, 2007. Pre-
liminary version in FOCS 2003.

[LCG+20] Fuchun Lin, Mahdi Cheraghchi, Venkatesan Guruswami, Reihaneh Safavi-Naini, and Huax-
iong Wang. Leakage-resilient secret sharing in non-compartmentalized models. In 1st Con-
ference on Information-Theoretic Cryptography (ITC 2020), volume 163 of LIPIcs, pages
7:1–7:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Lev86] Leonid A Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285–
286, 1986.

258

[Lew19] Mark Lewko. An explicit two-source extractor with min-entropy rate near 4/9. Mathematika,
65(4):950–957, 2019.

[Li11a] Xin Li. Improved constructions of three source extractors. In 26th Annual Conference on
Computational Complexity (CCC 2011), pages 126–136. IEEE, 2011.

[Li11b] Xin Li. A new approach to affine extractors and dispersers. In 26th Annual Conference on
Computational Complexity (CCC 2011), pages 137–147. IEEE, 2011.

[Li12a] Xin Li. Design extractors, non-malleable condensers and privacy amplification. In 44th
Annual ACM Symposium on Theory of Computing (STOC 2012), pages 837–854, 2012.

[Li12b] Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In 53rd
Annual Symposium on Foundations of Computer Science (FOCS 2012), pages 688–697.
IEEE, 2012.

[Li13a] Xin Li. Extractors for a constant number of independent sources with polylogarithmic min-
entropy. In 54th Annual Symposium on Foundations of Computer Science (FOCS 2013), pages
100–109. IEEE, 2013.

[Li13b] Xin Li. New independent source extractors with exponential improvement. In 45th Annual
ACM Symposium on Theory of Computing (STOC 2013), pages 783–792, 2013.

[Li15] Xin Li. Three-source extractors for polylogarithmic min-entropy. In 56th Annual Symposium
on Foundations of Computer Science (FOCS 2015), pages 863–882. IEEE, 2015.

[Li16] Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy. In
57th Annual Symposium on Foundations of Computer Science (FOCS 2016), pages 168–177.
IEEE, 2016.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In 49th Annual ACM Symposium on Theory of Computing (STOC 2017), pages
1144–1156, 2017.

[Li19] Xin Li. Non-malleable extractors and non-malleable codes: partially optimal constructions.
In 34th Computational Complexity Conference (CCC 2019), pages 1–49, 2019.

[Li23] Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. arXiv
preprint arXiv:2303.06802, 2023.

[Liu23] Kuikui Liu. Spectral Independence a New Tool to Analyze Markov Chains. PhD thesis,
University of Washington, 2023.

[LLS89] David Lichtenstein, Nathan Linial, and Michael Saks. Some extremal problems arising from
discrete control processes. Combinatorica, 9(3):269–287, 1989. Preliminary version in STOC
1987.

[LLTT05] Chia-Jung Lee, Chi-Jen Lu, Shi-Chun Tsai, and Wen-Guey Tzeng. Extracting randomness
from multiple independent sources. IEEE Transactions on Information Theory, 51(6):2224–
2227, 2005.

259

[LM22] Xizhi Liu and Dhruv Mubayi. On explicit constructions of designs. the electronic journal of
combinatorics, pages P1–53, 2022.

[LRVW03] Chi-Jen Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up to
constant factors. In 35th Annual ACM Symposium on Theory of Computing (STOC 2003),
pages 602–611, 2003.

[LS87] Zhenqin Li and Harold A Scheraga. Monte Carlo-minimization approach to the multiple-
minima problem in protein folding. Proceedings of the National Academy of Sciences (PNAS),
84(19):6611–6615, 1987.

[LS09] Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Foundations and
Trends® in Theoretical Computer Science, 3(4):263–399, 2009.

[LSŠ08] Troy Lee, Adi Shraibman, and Robert Špalek. A direct product theorem for discrepancy. In
2008 23rd Annual IEEE Conference on Computational Complexity (CCC 2008), pages 71–80.
IEEE, 2008.

[Lu04] Chi-Jen Lu. Encryption against storage-bounded adversaries from on-line strong extractors.
Journal of Cryptology, 17(1), 2004. Preliminary version in CRYPTO 2002.

[LV12] Shachar Lovett and Emanuele Viola. Bounded-depth circuits cannot sample good codes.
computational complexity, 21:245–266, 2012. Preliminary version in CCC 2011.

[LY22] Jiatu Li and Tianqi Yang. 3.1n − o(n) circuit lower bounds for explicit functions. In 54th
Annual ACM Symposium on Theory of Computing (STOC 2022), pages 1180–1193, 2022.

[LZ19] Fu Li and David Zuckerman. Improved extractors for recognizable and algebraic sources. In
23rd International Conference on Randomization and Computation (RANDOM 2019), 2019.

[McE78] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. Deep Space
Network Progress Report, 44:114–116, 1978.

[Mek17] Raghu Meka. Explicit resilient functions matching Ajtai-Linial. In 28th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2017), pages 1132–1148. SIAM, 2017.

[Mil76] Gary L Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System
Sciences, 13(3):300–317, 1976. Preliminary version in STOC 1975.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University
Press, 1995.

[MU02] Elchanan Mossel and Christopher Umans. On the complexity of approximating the VC di-
mension. Journal of Computer and System Sciences, 65(4):660–671, 2002. Preliminary
version in CCC 2001.

[MW97] Ueli Maurer and Stefan Wolf. Privacy amplification secure against active adversaries. In
17th Annual International Cryptology Conference (CRYPTO 1997), pages 307–321. Springer,
1997.

260

[NS20] Jesper Buus Nielsen and Mark Simkin. Lower bounds for leakage-resilient secret sharing.
In 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT 2020), pages 556–577. Springer, 2020.

[NT99] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and new constructions.
Journal of Computer and System Sciences, 58(1):148–173, 1999.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System
Sciences, 49(2):149–167, 1994. Preliminary version in FOCS 1988.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, 1996. Preliminary version in STOC 1993.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[PTVF07] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical
recipes: The art of scientific computing (3rd edition). Cambridge University Press, 2007.

[Rab80] Michael O Rabin. Probabilistic algorithm for testing primality. Journal of number theory,
12(1):128–138, 1980.

[Rao07] Anup Rao. An exposition of Bourgain’s 2-source extractor. Electronic Colloquium on Com-
putational Complexity (ECCC), TR07-034, 2007.

[Rao09a] Anup Rao. Extractors for a constant number of polynomially small min-entropy independent
sources. SIAM Journal on Computing, 39(1):168–194, 2009. Preliminary version in STOC
2006.

[Rao09b] Anup Rao. Extractors for low-weight affine sources. In 24th Annual IEEE Conference on
Computational Complexity (CCC 2009), pages 95–101. IEEE, 2009.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, 1998.
Preliminary version in STOC 1995.

[Raz05] Ran Raz. Extractors with weak random seeds. In 37th Annual ACM Symposium on Theory of
Computing (STOC 2005), pages 11–20, 2005.

[Rem16] Zachary Remscrim. The Hilbert function, algebraic extractors, and recursive fourier sampling.
In 57th Annual Symposium on Foundations of Computer Science (FOCS 2016), pages 197–
208. IEEE, 2016.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing the
error in trevisan’s extractors. Journal of Computer and System Sciences, 1(65):97–128, 2002.
Preliminary version in STOC 1999.

[RŠ94] Vojtěch Rödl and Edita Šinajová. Note on independent sets in steiner systems. Random
Structures & Algorithms, 5(1):183–190, 1994.

[RSW06] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via repeated
condensing. SIAM Journal on Computing, 35(5):1185–1209, 2006. Preliminary version in
FOCS 2000.

261

[RT00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors, and depth-
two superconcentrators. SIAM Journal on Discrete Mathematics, 13(1):2–24, 2000. Prelimi-
nary version in FOCS 1997.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders. Annals of Mathematics, 155:157–187, 2002. Preliminary
version in FOCS 2000.

[RW93] Alexander Razborov and Avi Wigderson. nω(logn) lower bounds on the size of depth-3 thresh-
old circuits with AND gates at the bottom. Information Processing Letters, 45(6):303–307,
1993.

[RY11] Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy and
mixed-sources extractors. Journal of Computer and System Sciences, 77(1):167–190, 2011.
Preliminary version in FOCS 2008.

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

[RZ08] Anup Rao and David Zuckerman. Extractors for three uneven-length sources. In 12th Inter-
national Conference on Randomization and Computation (RANDOM 2008), pages 557–570.
Springer, 2008.

[Sam68] Paul A Samuelson. Constructing an unbiased random sequence. Journal of the American
Statistical Association, 63(324):1526–1527, 1968.

[Sav98] John E Savage. Models of computation, volume 136. Addison-Wesley Reading, MA, 1998.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bull. EATCS, 99:49–79, 2009.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 27(4):701–717, 1980. Preliminary version in EUROSAM 1979.

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. The Bell system techni-
cal journal, 27(3):379–423, 1948.

[Sha49] Claude E Shannon. Communication theory of secrecy systems. The Bell system technical
journal, 28(4):656–715, 1949.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[Sha04a] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Current Trends
in Theoretical Computer Science: The Challenge of the New Century Vol 1: Algorithms and
Complexity Vol 2: Formal Models and Semantics, pages 189–228, 2004.

[Sha04b] Ronen Shaltiel. Towards proving strong direct product theorems. Computational Complexity,
12(1/2):1–22, 2004. Preliminary version in CCC 2001.

[Sha08] Ronen Shaltiel. How to get more mileage from randomness extractors. Random Structures &
Algorithms, 33(2):157–186, 2008. Preliminary version in CCC 2006.

262

[Sha11a] Ronen Shaltiel. Dispersers for affine sources with sub-polynomial entropy. In 52nd Annual
Symposium on Foundations of Computer Science (FOCS 2011), pages 247–256. IEEE, 2011.

[Sha11b] Ronen Shaltiel. An introduction to randomness extractors. In International Colloquium on
Automata, Languages, and Programming (ICALP 2011), pages 21–41. Springer, 2011.

[Sha11c] Ronen Shaltiel. Weak derandomization of weak algorithms: explicit versions of yao’s lemma.
computational complexity, 20:87–143, 2011. Preliminary version in CCC 2009.

[Sid95] Alexander Sidorenko. What we know and what we do not know about turán numbers. Graphs
and Combinatorics, 11(2):179–199, 1995.

[Sid18] Alexander Sidorenko. Extremal problems on the hypercube and the codegree turán density of
complete r-graphs. SIAM Journal on Discrete Mathematics, 32(4):2667–2674, 2018.

[Sid20] Alexander Sidorenko. On generalized erdős–ginzburg–ziv constants for Zd2. Journal of Com-
binatorial Theory, Series A, 174:105254, 2020.

[SSZ98] Michael Saks, Aravind Srinivasan, and Shiyu Zhou. Explicit or-dispersers with polylogarith-
mic degree. Journal of the ACM (JACM), 45(1):123–154, 1998. Preliminary version in STOC
1995.

[ST04] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partition-
ing, graph sparsification, and solving linear systems. In 36th Annual Symposium on Theory
of Computing (STOC 2004), pages 81–90. ACM, 2004.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. Journal of the ACM (JACM), 52(2):172–216, 2005. Preliminary
version in FOCS 2001.

[SV86] Miklos Santha and Umesh V Vazirani. Generating quasi-random sequences from semi-
random sources. Journal of computer and system sciences, 33(1):75–87, 1986. Preliminary
version in FOCS 1984.

[SV19] Akshayaram Srinivasan and Prashant Nalini Vasudevan. Leakage resilient secret sharing and
applications. In 39th Annual International Cryptology Conference (CRYPTO 2019), pages
480–509. Springer, 2019.

[SW84] Quentin F Stout and Bette Warren. Tree algorithms for unbiased coin tossing with a biased
coin. The Annals of Probability, 12(1):212–222, 1984.

[SZ99] Aravind Srinivasan and David Zuckerman. Computing with very weak random sources. SIAM
Journal on Computing, 28(4):1433–1459, 1999. Preliminary version in FOCS 1994.

[Ta-96] Amnon Ta-Shma. On extracting randomness from weak random sources. In 28th Annual
ACM Symposium on Theory of Computing (STOC 1996), pages 276–285, 1996.

[Ta-02] Amnon Ta-Shma. Almost optimal dispersers. Combinatorica, 22(1):123–145, 2002. Prelim-
inary version in STOC 1998.

[Tha98] Jayram S Thathachar. On separating the read-k-times branching program hierarchy. In 30th
Annual ACM Symposium on Theory of Computing (STOC 1998), pages 653–662, 1998.

263

[TL18] Fang Tian and Zi-Long Liu. Bounding the independence number in some (n, k, ℓ, λ)-
hypergraphs. Graphs and Combinatorics, 34:845–861, 2018.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–
879, 2001. Preliminary version in STOC 1999.

[TSG23] Karan Taneja, Richard Segal, and Richard Goodwin. Monte Carlo tree search for recipe gen-
eration using GPT-2. In 14th International Conference on Computational Creativity (ICCC
2023), 2023.

[TU12] Amnon Ta-Shma and Christopher Umans. Better condensers and new extractors from
parvaresh-vardy codes. In 27th Conference on Computational Complexity (CCC 2012), pages
309–315. IEEE, 2012.

[TUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless condensers, unbal-
anced expanders, and extractors. Combinatorica, 27:213–240, 2007. Preliminary version in
STOC 2001.

[TV00] Luca Trevisan and Salil Vadhan. Extracting randomness from samplable distributions. In 41st
Annual Symposium on Foundations of Computer Science (FOCS 2000), pages 32–42. IEEE,
2000.

[TZ04] Amnon Ta-Shma and David Zuckerman. Extractor codes. IEEE Transactions on Information
Theory, 50(12):3015–3025, 2004. Preliminary version in STOC 2001.

[TZS06] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. Extractors from Reed–Muller codes.
Journal of Computer and System Sciences, 72(5):786–812, 2006. Preliminary version in
FOCS 2001.

[Uma99] Christopher Umans. Hardness of approximating σp2 minimization problems. In 40th Annual
Symposium on Foundations of Computer Science (FOCS 1999), pages 465–474. IEEE, 1999.

[Vad04] Salil P Vadhan. Constructing locally computable extractors and cryptosystems in the
bounded-storage model. Journal of Cryptology, 17:43–77, 2004. Preliminary version in
CRYPTO 2003.

[Vad12] Salil Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer Sci-
ence, 7(1–3):1–336, 2012.

[Var57] Rom Rubenovich Varshamov. Estimate of the number of signals in error correcting codes.
Docklady Akad. Nauk, SSSR, 117:739–741, 1957.

[Vaz87a] Umesh Vazirani. Efficiency considerations in using semi-random sources. In 19th Annual
ACM Symposium on Theory of Computing (STOC 1987), pages 160–168, 1987.

[Vaz87b] Umesh V Vazirani. Strong communication complexity or generating quasi-random sequences
from two communicating semi-random sources. Combinatorica, 7(4):375–392, 1987. Pre-
liminary version in STOC 1985.

[Vio05] Emanuele Viola. The complexity of constructing pseudorandom generators from hard func-
tions. computational complexity, 13(3-4):147–188, 2005. Preliminary version in CCC 2003.

264

[Vio12a] Emanuele Viola. The complexity of distributions. SIAM Journal on Computing, 41(1):191–
218, 2012. Preliminary version in FOCS 2010.

[Vio12b] Emanuele Viola. Extractors for turing-machine sources. In 16th International Conference on
Randomization and Computation (RANDOM 2012), pages 663–671. Springer, 2012.

[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM Journal on Computing, 43(2):655–672,
2014. Preliminary version in FOCS 2011.

[Vio16] Emanuele Viola. Quadratic maps are hard to sample. ACM Transactions on Computation
Theory (TOCT), 8(4):1–4, 2016.

[Vio20] Emanuele Viola. Sampling lower bounds: boolean average-case and permutations. SIAM
Journal on Computing, 49(1):119–137, 2020.

[Vio23] Emanuele Viola. New sampling lower bounds via the separator. In 38th Computational Com-
plexity Conference (CCC 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[vN51] John von Neumann. Various techniques used in connection with random digits. Applied Math
Series, 12(36-38):1, 1951.

[VV85] Umesh V Vazirani and Vijay V Vazirani. Random polynomial time is equal to slightly-random
polynomial time. In 26th Annual Symposium on Foundations of Computer Science (FOCS
1985), pages 417–428. IEEE, 1985.

[War36] Ewald Warning. Bemerkung zur vorstehenden arbeit von herrn chevalley. Abh. Math. Sem.
Univ. Hamburg, 11:76–83, 1936.

[Wat13] Thomas Watson. Time hierarchies for sampling distributions. In 4th Conference on Innova-
tions in Theoretical Computer Science (ITCS 2013), pages 429–440, 2013.

[Wat16] Thomas Watson. Nonnegative rank vs. binary rank. Chicago Journal of Theoretical Computer
Science, 2:1–13, 2016.

[Wat20] Thomas Watson. Communication complexity with small advantage. computational complex-
ity, 29(1):2, 2020. Preliminary version in CCC 2018.

[Wil16] Richard Ryan Williams. Strong ETH breaks with Merlin and Arthur: short non-interactive
proofs of batch evaluation. In 31st Conference on Computational Complexity (CCC 2016),
pages 1–17, 2016.

[WP23] Adam Bene Watts and Natalie Parham. Unconditional quantum advantage for sampling with
shallow circuits. arXiv preprint arXiv:2301.00995, 2023.

[WZ99] Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound: Explicit
construction and applications. Combinatorica, 19:125–138, 1999. Preliminary version in
STOC 1993.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing. In 11th
Annual ACM Symposium on Theory of Computing (STOC 1979), pages 209–213, 1979.

265

[Yao82] Andrew C Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium on
Foundations of Computer Science (FOCS 1982), pages 80–91. IEEE, 1982.

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles. In 26th Annual
Symposium on Foundations of Computer Science (FOCS 1985), pages 1–10. IEEE, 1985.

[Yao90] AC-C Yao. On ACC and threshold circuits. In 31st Annual Symposium on Foundations of
Computer Science (FOCS 1990), pages 619–627. IEEE, 1990.

[Yeh11] Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245, 2011.

[YZ24] Huacheng Yu and Wei Zhan. Sampling, flowers and communication. In 15th Innovations in
Theoretical Computer Science Conference (ITCS 2024). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2024.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International symposium
on symbolic and algebraic manipulation, pages 216–226. Springer, 1979.

[Zuc90] David Zuckerman. General weak random sources. In 31st Annual Symposium on Foundations
of Computer Science (FOCS 1990), pages 534–543. IEEE, 1990.

[Zuc96a] David Zuckerman. On unapproximable versions of NP-complete problems. SIAM Journal on
Computing, 25(6):1293–1304, 1996. Preliminary version in CCC 1993.

[Zuc96b] David Zuckerman. Simulating BPP using a general weak random source. Algorithmica,
16:367–391, 1996. Preliminary version in FOCS 1991.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures & Algo-
rithms, 11(4):345–367, 1997. Preliminary version in STOC 1996.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3:103–128, 2007. Preliminary version in STOC
2006.

266

	Introduction
	Randomness in computation
	Randomness in the wild
	Randomness extractors
	On the existence of extractors
	Seeded extractors
	Seedless extractors
	Our contributions

	Preliminaries
	Notation
	Probability
	Extractors
	Codes

	I Extractors for independent sources
	Extractors for adversarial sources
	Introduction
	Our results
	The main extractor
	A known construction: two-source extractors everywhere
	A warm-up construction: three-source extractors and cap set bounds
	The general construction: leakage-resilient extractors and extremal designs

	Optimized extractors for a few long sources
	Polylogarithmic good sources via correlation breakers and Ramsey graphs
	Polynomial locality via correlation breakers and extremal C4-free graphs

	Optimized extractors for many short sources
	Polylogarithmic good sources via extractors for low-weight affine sources
	Polynomial locality via extractors for low-weight affine sources

	Applications in pseudorandomness
	Extractors for total-entropy sources
	Extractors for small-space sources

	Applications in distributed computing
	Collective coin flipping

	Applications in cryptography
	The common reference string (CRS) model

	Future directions

	Leakage-resilient extractors
	Introduction
	Our results
	The extractor
	The NOF-hard function
	Handling more leakage under less collusion via basic combinatorics
	Dropping the entropy requirement via two-source condensers and leakage lifting
	Adding adaptivity at (almost) no cost

	Applications in communication complexity
	Explicit lower bounds against multiparty communication protocols

	Applications in cryptography
	Leakage-resilient secret sharing: an exponential improvement

	Applications in pseudorandomness
	Extractors for adversarial sources

	Future directions

	Explicit extremal designs
	Introduction
	Our results
	The design
	A simple construction via linear codes and Erdős-Ginzburg-Ziv constants

	Applications in pseudorandomness
	Extractors for adversarial sources

	Future directions

	II Extractors for algebraic sources
	Extractors for affine sources
	Introduction
	Our results
	The extractor
	A simple construction via somewhere extractors and correlation breakers

	Applications in pseudorandomness
	Extractors for small-space sources
	Extractors for circuit sources

	Applications in complexity theory
	Explicit lower bounds against circuits and more

	Future directions

	III Extractors for low-complexity sources
	Extractors for small-space sources
	Introduction
	Our results
	The extractors
	An old reduction from small-space sources to adversarial sources
	A new reduction from small-space sources to affine sources

	Applications in complexity theory
	Complexity of sampling

	Future directions

	Extractors for circuit sources
	Introduction
	Our results
	Do black-box affine extractors suffice?
	Entropy upper bounds: a reduction from d-local sources to 1-local NOBF sources
	Entropy lower bounds: a big 2-local Sidon set from low-rank symmetric matrices

	Do white-box affine extractors suffice?
	On the power of (random) low-degree polynomials
	Entropy upper bounds: a reduction from d-local sources to d-local NOBF sources
	Entropy lower bounds: a low-weight Chevalley-Warning theorem

	Extensions to more powerful circuits
	Applications in complexity theory
	Complexity of sampling

	Future directions

	The space complexity of sampling
	Introduction
	Our results
	The models
	Computing in small space
	Sampling in small space
	Equivalence theorems

	The basics
	Sampling is easier than computing
	Sampling lower bounds against input-output pairs
	Sampling lower bounds against general distributions

	Sampling lower bounds against codes
	Sampling lower bounds against list-decodable codes
	Sampling upper bounds against uniquely-decodable codes

	Sampling lower bounds via direct product theorems
	A simple lemma on amplifying statistical distance
	A direct product theorem for KRVZ samplers
	A direct product theorem for ROBP samplers

	Applications in data structures
	Data structure lower bounds for storing codewords

	Applications in communication complexity
	A simple new proof of known lower bounds for sampling disjoint sets

	Future directions

